- НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ТОРМОЗОВ
- Назначение тормозов
- Способы создания замедления движения
- Классификация тормозов
- Типы тормозных систем. Классификация
- Назначение тормозного управления. Способы торможения
- Классификация тормозов
- Содержание
- Общие сведения
- Виды электрического торможения
- Динамические тормоза
- Фрикционные тормоза
- Автотормоза
- Неавтоматические тормоза
НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ ТОРМОЗОВ
Эффективность тормозных средств является одним из важнейших условий, определяющих возможность повышения веса и скорости движения поездов, пропускной и провозной способности железных дорог. От свойств и состояния тормозного оборудования подвижного состава в значительной степени зависит безопасность движения.
Последствия неэффективных тормозов
Назначение тормозов
В процессе движения поезда на него действуют силы, различные по своему характеру и направлению. Различают силы внешние (например, сила сопротивления движению от уклона) и внутренние (например, сила трения в моторно-осевых подшипниках). Внешние силы можно разделить на управляемые (сила тяги) и неуправляемые (силы сопротивления движению). В зависимости от соотношения управляемых и неуправляемых сил, поезд может двигаться ускоренно, замедленно или с равномерной скоростью.
Сила тяги — внешняя движущая сила, которая создается тяговыми электродвигателями локомотива во взаимодействии с рельсами. Она приложена к ободу колес в направлении движения. Для остановки поезда необходимо исключить действие силы тяги, т. е. отключить тяговые двигатели локомотива. Однако поезд продолжит движение по инерции за счет накопленной кинетической энергии и до полной остановки пройдет значительное расстояние. Чтобы обеспечить остановку поезда в требуемом месте или снижение скорости движения на определенном участке следования, необходимо искусственно увеличить силы сопротивления движению.
Устройства, применяемые в поездах для создания искусственного сопротивления движению, называются тормозами, а силы, создающие искусственное сопротивление движению, — тормозными силами.
Тормозные силы и силы сопротивления движению гасят кинетическую энергию движущегося поезда.
Способы создания замедления движения
Различают фрикционный, реверсивный и электромагнитный способы создания замедления движения.
Фрикционный способ. При этом способе сопротивление движению создается вследствие трения тормозных колодок (или специальных накладок) о поверхность катания колес подвижного состава (или дисков). В этом случае кинетическая энергия поезда преобразуется в теплоту, нагревающую трущиеся детали и рассеиваемую в окружающую среду.
Колодочный (фрикционный) тормоз
Реверсивный способ. На локомотивах с электрической передачей осуществляется переключение тяговых электродвигателей в генераторный режим, что вызывает изменение направления электромагнитного момента электрической машины. Это торможение называется электродинамическим. Оно бывает рекуперативным или реостатным. В первом случае вырабатываемая электрическая энергия возвращается в контактную сеть, во втором — электрическая энергия поступает на специальные тормозные резисторы и превращается в теплоту, которая рассеивается в окружающую среду.
Реверсивный способ создания замедления движения применяется также на локомотивах с гидропередачей (гидродинамический тормоз) и на паровозах (контрпар).
Электромагнитный способ. При этом способе тормозная сила создается притяжением специальных тормозных башмаков с электромагнитами к рельсам. На подвижном составе применяются как электромагнитные рельсовые тормоза, так и тормоза с использованием вихревых токов. Особенность этого способа создания замедления заключается в том, что мощность тормоза ограничивается только значением допустимого замедления. Поэтому электромагнитный способ используют только при экстренном торможении.
Классификация тормозов
Тормоза классифицируют по способу создания тормозной силы, свойствам системы управления и назначению .
- По способу создания тормозной силы различают фрикционные тормоза (колодочные и дисковые) и динамические (электродинамические, гидродинамические и реверсивные).
- По свойствам системы управления различают тормоза автоматические (прямо- и непрямодействующие) и неавтоматические (прямодействующие).
Тормоза этих двух типов подразделяются на пневматические, электропневматические и электрические. Принципиальное отличие пневматического тормоза от электропневматического состоит только в способе управления: управление пневматическим тормозом осуществляется изменением давления сжатого воздуха в специальном воздухопроводе (тормозная магистраль), проложенном вдоль каждого локомотива и вагона, а управление электропневматическим тормозом осуществляется электрическим током. В качестве рабочего тела в обоих случаях используется энергия сжатого воздуха. Автоматические тормоза должны автоматически приходить в действие (затормаживать) при определенном темпе снижения давления в тормозной магистрали. Прямо- или непрямодействие автоматического тормоза определяется конструкцией воздухораспределителя. Прямодействующий автоматический тормоз — это тормоз грузовых вагонов, оборудованный воздухораспределителем
усл. № 483, который способен поддерживать установленное давление в тормозном цилиндре независимо от плотности последнего.
Непрямодействующий автоматический тормоз — это тормоз пассажирских вагонов, оборудованный воздухораспределителем усл. № 292, который не восполняет утечки сжатого воздуха из тормозного цилиндра.
Примером прямодействующего неавтоматического тормоза служит вспомогательный локомотивный тормоз. В случае приведения его в действие воздух из главных резервуаров поступает в тормозные цилиндры. - По назначению различают тормоза грузовые, пассажирские и скоростные . За характеристику их работы принимают время наполнения и опорожнения тормозного цилиндра.
Анимация (мультик) по схемам прямодействующего, нпрямодействующего
тормоза и ЭПТ
Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242.
С анимацией и дикторским сопровождением
Источник
Типы тормозных систем. Классификация
Каждое транспортное средство, от самых малых автомобилей весом 400–450 кг и до больших карьерных самосвалов или автопоездов весом 500–600 т, должно быть оборудовано рабочей, запасной и стояночной тормозными системами.
Рабочая (основная) тормозная система обеспечивает уменьшение скорости движения вплоть до полной остановки автомобиля, запасная тормозная система — остановку автомобиля в случае выхода из строя рабочей тормозной системы, а стояночная тормозная система — удержание остановленного автомобиля на месте, неограниченно длительное время. Помимо этих систем на грузовых автомобилях весом более 16 т и на больших междугородных автобусах обязательно применение четвертой тормозной системы — вспомогательной (противоизносной).
Схема системы тормозного управления
Совокупность всех тормозных систем называют системой тормозного управления. Допускается не оборудовать тормозным управлением прицепы весом менее 750 кг.
К тормозному управлению предъявляются повышенные требования, так как оно является важнейшим средством обеспечения активной безопасности автомобиля. Требования к тормозным системам автотранспортных средств установлены в нескольких российских и международных нормативных документах. Основными из них являются ГОСТ Р 41.13-99 (так называемые Правила № 13 Европейской Экономической Комиссии ООН), ГОСТ Р 41.13Н-99, ГОСТ Р 51709-2001, ГОСТ 4364-88, ОСТ 37.001.067-86. Большая часть этих документов устанавливает требования к эффективности тормозов новых автомобилей. В ГОСТ Р 51709-2001 указывается, каким требованиям должны отвечать тормозные системы автомобилей в эксплуатации. Тормозные требования к ним менее жесткие, чем к новым автомобилям.
В техническом плане требования к тормозным системам следующие:
— обеспечение минимального тормозного пути, максимального установившегося замедления или тормозной силы на колесах;
— удержание транспортного средства на уклоне определенной величины на стоянке;
— сохранение устойчивости при торможении (критериями устойчивости служат линейное отклонение, угловое отклонение, угол складывания автопоезда);
— стабильность тормозных свойств при неоднократных торможениях, при которых происходит разогрев тормозных механизмов;
— минимальное время срабатывания тормозного привода;
— следящее действие тормозного привода, т. е. пропорциональность между усилием на педали (рычаге) и тормозным моментом на колесе;
— малая работа управления тормозными системами (усилие на тормозной педали, в зависимости от назначения автотранспортного средства, должно быть не более 500–700 Н; ход тормозной педали 80–180 мм);
— поддержание установившейся скорости при движении на затяжном спуске (для вспомогательной тормозной системы);
— отсутствие полного блокирования (юза) колес;
— неравномерность действия тормозов левого и правого колес одной оси не должна превышать определенной величины;
— отсутствие раздражающих органолептических явлений при торможении (скрип, неприятный запах);
— повышенная надежность всех элементов тормозных систем, основные элементы которых не должны выходить из строя на протяжении гарантированного ресурса.
Должна быть также предусмотрена сигнализация, оповещающая водителя о неисправностях в системе тормозного управления.
Рабочая тормозная система автомобиля обычно приводится в действие ножной тормозной педалью. На автомобилях, специально предназначенных для управления водителями-инвалидами без обеих ног, рабочая тормозная система приводится в действие рукой от специального рычага, закрепленного на руле. На прицепах и полуприцепах рабочая система приводится в действие по гидравлическому, пневматическому или электрическому сигналу, поступающему от тормозной системы автомобиля-тягача в момент начала его торможения. Существуют также тормозные системы прицепов, в которых рабочая система начинает срабатывать вследствие набегания (накатывания) прицепа на тормозящий тягач, при котором возникает сила сжатия в сцепке. Такая тормозная система прицепа называется тормозом наката.
Источник
Назначение тормозного управления. Способы торможения
Тормозным управлением называется совокупность систем автомобиля, призванных уменьшать скорость движения вплоть до полной остановки и удерживать автомобиль на уклоне неограниченно длительное время.
Тормозная сила может иметь аэродинамическую природу, являться следствием использования сил трения, гидравлического сопротивления или электромагнитного поля. Для создания аэродинамической тормозной силы используется тормозной парашют или специальные «закрылки», выдвигаемые из кузова автомобиля. Такой способ торможения используется только на гоночных автомобилях, так как он эффективен только при высокой скорости.
Наиболее часто для замедления автомобиля или удержания его на уклоне при стоянке используют тормозную силу между колесом и дорогой. Эта сила возникает в результате того, что искусственно затрудняется свободное вращение колеса. Направление тормозной силы противоположно направлению движения автомобиля. Препятствие вращению колеса могут создавать колесный тормозной механизм, двигатель автомобиля или специальный гидравлический или электрический тормоз-замедлитель, установленный в трансмиссии.
Тормозная сила в пятне контакта шины с дорогой тем больше, чем больше оказывается сопротивление вращению колеса. Это сопротивление тем больше, чем сильнее водитель нажимает педаль тормоза. Однако не стоит думать, что увеличивая усилие на педали, можно довести тормозную силу до бесконечности. Максимальное значение тормозной силы зависит еще и от сцепления колеса с дорогой. Чем лучше сцепление шины с дорогой, тем большая тормозная сила может быть получена. Сцепление зависит от вертикальной нагрузки, прижимающей колесо к дороге (вертикальная реакция), рисунка протектора шины и ее конструкции, состояния дорожного покрытия. Так, на асфальтовой сухой дороге торможение более эффективно, чем на той же дороге во время дождя или на льду. Максимальное сцепление колеса с дорогой при торможении обеспечивается при его качении с одновременным частичным проскальзыванием. Когда колесо полностью блокируется, то есть, скользит по дороге без проворачивания, то сцепление уменьшается на 20–30 % от максимального значения. Желательно при торможении колесо не доводить до полной блокировки.
Для получения максимального значения тормозной силы все колеса автомобиля делаются тормозящими, т. е. используются все вертикальные реакции от дороги, действующие на колеса автомобиля.
Вертикальные реакции от дороги на передние и задние колеса автомобиля меняются при изменении его загрузки, особенно у грузовых автомобилей, прицепов (полуприцепов) и автобусов. Так, например, вертикальные нагрузки на задние колеса порожнего грузового автомобиля могут отличаться от нагрузок полностью груженного автомобиля в 3–4 раза. Кроме того, при торможении, по мере увеличения замедления автомобиля, меняется соотношение вертикальных реакций на передних и задних колесах. Происходит перераспределение реакций: возрастание на передних и уменьшение на задних колесах. Для повышения эффективности торможения тормозные силы также должны меняться пропорционально изменению вертикальных реакций на передних и задних колесах.
Источник
Классификация тормозов
- По способам создания тормозной силы различают тормоза фрикционные (колодочные и дисковые) и динамические (электродинамические, гидродинамические и реверсивные)..
- по характеру управления — автоматического (прямо- и непрямодействующие) и неавтоматические (прямодействующие). Тормоза этих двух типов подразделяются на пневматические, электропневматические и электрические.
- По назначению — тормоза грузовые, пассажирские и скоростные.
Содержание
Общие сведения
Тормозами обозначают установку, предназначенную для уменьшения скорости, остановки подвижного состава или задержания его на месте. Тормоза подвижного состава железных дорог подразделяются на фрикционные и электрические. Схема подразделения тормозов показана на рисунке выше.
Наиболее распространенный в сети железных дорог фрикционный тормоз, принцип работы которого основан для осуществления сопротивления движению поезда за счет возникновения сил трения, появляющиеся промеж колес и прижимающимися к ним тормозными колодками. По способу управления и источнику используемой энергии для нажатия тормозных колодок фрикционный тормоз подразделяется на пневматический, электропневматический и ручной. Базовым типом фрикционного тормоза, использующегося на подвижном составе железных дорог, является пневматический, принцип его работы основан на формировании разности давлений сжатого воздуха в камерах приборов регулирования тормозами. Пневматический тормоз разделяют на неавтоматический прямодействующий, автоматический непрямодействующий и автоматический прямодействующий.
Подвижной состав железных дорог используют автоматические тормоза.Автоматическим непрямодействующим тормозом обеспечены локомотивы и вагоны, перевозящие пассажиров. Установки пневматического тормоза подвижного состава состоят из ряда устройств. Источник сжатого воздуха это установленный на локомотиве компрессор. Компрессор, сжимающий воздух до давления 0,75-0,9 МПа на электровозах, 0,75-0,85 МПа на тепловозах и 0,65-0,8 МПа в моторном подвижном составе, накачивает его в главный резервуар, где воздух накапливается и охлаждается. Далее из главных резервуаров сжатый воздух попадает в тормозную магистраль проходя через кран машиниста, который в пассажирских поездах способствует удержанию зарядного давления 0,5-0,52 Мпа.
Автоматический непрямодействующий тормоз заряжают воздухом перед отправлением поезда, устанавливая ручку 3 крана машиниста (рис 2.) в положение отпуска. При этом воздух, проходя по тормозной магистрали 5 через воздухораспределитель 8, заполняет запасный резервуар 7 до зарядного давления. В то же время с этим воздухораспределитель сообщает тормозной цилиндр с атмосферой. Под воздействием пружин тормозного цилиндра его поршень, передвигаясь в исходное положение через рычажную передачу 10, отрывает тормозные колодки 11 от колес. При торможении тормозная магистраль разъединяется от главного резервуара, и процесс торможения осуществляется за счет воздуха из запасных резервуаров, из − за этого тормоз называется непрямодействующим. При прорыве воздушной магистрали поезда или открытия в вагоне поезда стоп-крана происходит выход воздуха из магистрали и осуществляется торможение так же, как при управляемом выходе воздуха из магистрали через кран машиниста, такой тормоз называют автоматическим.
Электропневматический тормоз (ЭПТ) кроме пневматического оборудования имеет устройства, управляемые с помощью электрического тока. Схема электропневматического тормоза показана на рисунке 3.
Электрическое торможение заключается в возможности перевода электродвигателей в режим электрических генераторов, чтобы кинетическую энергию движущегося поезда превращают в электрическую. Электрическое торможение используется при притормаживании и изменении скорости движения поездов на уклонах, а также для снижения скорости перед остановкой. При электрическом торможении фрикционные тормоза не работают, исключается возможность нагрева тормозных колодок и бандажей колесных пар и уменьшается их износ.
Виды электрического торможения
Существует три вида электрического торможения:
· рекуперативное электрическая энергия, выработанная тяговым двигателем локомотива, поступает обратно в электросеть. Используется в электровозах постоянного тока;
· реостатное торможение электрическая энергия поглощается реостатами и преобразуется в тепловую. Используется на тепловозах и отдельных типах электровозов и моторвагонного подвижного состава;
· рекуперативно ̶ реостатное при высокой скорости движения применяется рекуперативное торможение, а при более низкой реостатное. Такая система используется на электропоездах ЭР22, ЭР2Р, ЭР2Т и др.
Ручные тормоза являются запасным вариантом торможения , если отказали автоматические тормоза в пути , а также для удержания состава на путях станции. Этими тормозами оборудованы локомотивы, моторвагонный подвижной состав, пассажирские и частично грузовые вагоны. Привод ручного тормоза соединен с рычажной тормозной передачей автоматического тормоза. На грузовых вагонах ручной тормоз расположена на переходных площадках, а на вагонах, безпереходных площадок, стояночный тормоз находится сбоку вагона.
Тормоза классифицируют по способу создания тормозной силы, свойствам системы управления и назначению.
- По способу создания тормозной силы различают фрикционные тормоза (колодочные и дисковые) и динамические (электродинамические, гидродинамические и реверсивные).
- По свойствам системы управления различают тормоза автоматические (прямо- и непрямодействующие) и неавтоматические (прямодействующие). Тормоза этих двух типов подразделяются на пневматические, электропневматические и электрические. Принципиальное отличие пневматического тормоза от электропневматического состоит только в способе управления: управление пневматическим тормозом осуществляется изменением давления сжатого воздуха в специальном воздухопроводе (тормозная магистраль), проложенном вдоль каждого локомотива и вагона, а управление электропневматическим тормозом осуществляется электрическим током. В качестве рабочего тела в обоих случаях используется энергия сжатого воздуха.
Автоматические тормоза должны автоматически приходить в действие (затормаживать) при определенном темпе снижения давления в тормозной магистрали. Прямо- или непрямодействие автоматического тормоза определяется конструкцией воздухораспределителя.
Прямодействующий автоматический тормоз — это тормоз грузовых вагонов, оборудованный воздухораспределителем усл. № 483, который способен поддерживать установленное давление в тормозном цилиндре независимо от плотности последнего.
Непрямодействующий автоматический тормоз — это тормоз пассажирских вагонов, оборудованный воздухораспределителем усл. № 292, который не восполняет утечки сжатого воздуха из тормозного цилиндра.
Примером прямодействующего неавтоматического тормоза служит вспомогательный локомотивный тормоз. В случае приведения его в действие воздух из главных резервуаров поступает в тормозные цилиндры.
- По назначению различают тормоза грузовые, пассажирские и скоростные. За характеристику их работы принимают время наполнения и опорожнения тормозного цилиндра.
Динамические тормоза
В динамических тормозах сила торможения может создаваться электромагнитным полем при переключении электрических двигателей в генераторный режим, а тормозная энергия гасится в реостатах либо передается в контактную сеть — электродинамические тормоза (реостатные, рекуперативные либо рекуперативно-реостатные), или за счет соответствующего переключения гидропередачи на тяговом подвижном составе с гидропередачей — гидродинамическое торможение.
Фрикционные тормоза
Фрикционные тормоза создают тормозную силу в месте контакта колеса и рельса при их сцеплении в результате воздействия тормозных колодок на поверхности катания колес (колодочные тормоза) либо тормозных накладок на диски, закрепленные на колесных парах (дисковые тормоза), а также за счет притяжения возбуждаемых током тормозных магнитов непосредственно к рельсам. В последнем случае, т. н. фрикционные рельсовые тормоза, используемые на скоростном либо на специальном промышленном подвижном составе, работающем на особо крутых уклонах (более 0,04), действуют независимо от сцепления колес с рельсами.
Фрикционные тормоза имеют пневматический привод и приводятся в действие сжатым воздухом, поступающим к вагонам поезда через тормозную магистраль, которая одновременно является управляющей. Торможение обеспечивается снижением давления в тормозной магистрали, отпуск тормозов — его повышением. Любой разрыв состава либо разъединение тормозной магистрали (открытие стоп-крана, сообщающего тормозную магистраль с атмосферой) приводит к автоматическому торможению поезда. Для длительного удержания подвижного состава на месте используется ручной привод тормоза (ручные тормоза) или тормозные башмаки, устанавливаемые на рельсы. Для обеспечения безопасности движения необходимым свойством тормозов, применяемых в качестве основных, является автоматичность их действия.
Автотормоза
Автотормоза срабатывают при разрыве состава независимо от поведения машиниста. Используются тормоза с пневматическим или электрическим управлением, которое обеспечивает срабатывание системы на торможение при снижении соответственно давления в тормозной магистрали или напряжения в электрических цепях управления. Допускаемая максимальная скорость движения поезда устанавливается с расчетом на срабатывание фрикционного автоматического тормоза, который гарантирует безопасность движения. К такому тормозу предъявляются требования отсутствия неконтролируемых отказов и переход на торможение с максимальной тормозной силой при неисправностях, исключающих нормальное управление тормозом, например, при разрыве цепи управления.
Неавтоматические тормоза
В то же время на подвижном составе широко применяются неавтоматические тормоза, которые имеют ручной привод либо приводятся в действие повышением давления или электрического напряжения в управляющей магистрали. К неавтоматическим относятся ручные тормоза, вспомогательные тормоза локомотивов, электропневматические тормоза пассажирского подвижного состава.
Источник