Внешние и внутренние силы. Метод сечений
Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями.
По способу приложения внешние силы делятся на объемные и поверхностные.
Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных сил является сила, отнесенная к единице объема — кН/м 3 .
Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воздействие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Примером может служить собственный вес балки, действие снеговой или ветровой нагрузки на сооружение, давление жидкости в резервуаре. Распределенная нагрузка может действовать и по линии как, например, при соприкасании двух цилиндров при параллельном расположении их осей. Сосредоточенные усилия измеряются в кН, а распределенные — кН/м 2 или кН/м.
По времени действия внешние нагрузки (силы) разделяются на постоянные и временные. Собственный вес зданий – это постоянно действующая нагрузка; поезд, идущий через мост, — это нагрузка временная.
По характеру изменения силы во времени различают нагрузки статические и динамические. Статические нагрузки (постоянные) — такие, которые изменяют свою величину или точку приложения (направление) с очень небольшой скоростью, так что возникающими при этом ускорениями (силами инерции) можно пренебречь. Динамические нагрузки — изменяются во времени с большой скоростью, при этом силы инерции должны быть учтены, так как оказывают существенное влияние на конструкцию. Динамические нагрузки подразделяются на внезапно приложенные, повторно-переменные и ударные. Примером внезапно приложенной нагрузки может служить действие веса железнодорожного состава, проходящего через мост; повторно-переменной – нагрузка на шатун в двигателе внутреннего сгорания; ударной – действие силы удара молота на его фундамент или гидравлический удар в гидросистеме. Ударные нагрузки возникают также в случае плохой пригонки или износа сопряженных деталей, когда зазоры превышают величину, допустимую по конструктивным и технологическим условиям. Например, при износе зубьев шестерен или деталей шариковых подшипников в машине возникают характерные стуки, свидетельствующие о возникновении ударных нагрузок, быстро приводящих к выходу конструкции из строя.
Скорость роста усилий при динамическом нагружении не обеспечивает равновесности процессов, протекающих в материале, в результате чего возникают многочисленные нарушения внутренней структуры материала. При систематическом чередовании нагружения и разгрузки накопление дефектов структуры ведет к возникновению микроскопических трещин, слияние которых приводит к усталостному разрушению.
Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой.
В брусе сечение проводят перпендикулярно его оси. Такое сечение называют поперечным.
Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.
Рассмотрим тело, имеющее форму бруса (рис. 1.4, а).
Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3. Рn , удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия.
Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.4, б).
Рис. 1.4
Обозначая через и
суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что
(1.1)
для отсеченных частей бруса получим следующие очевидные соотношения:
;
. (1.2)
Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом сутьметода сечений.
Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций.
Воспользуемся правилами статики и приведем систему внутренних сил к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил
и главный вектор момента
(рис. 1.5). Далее выбираем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось
направим по нормали к сечению, а оси
и
расположим в плоскости сечения. Спроектировав главный вектор сил
и главный момент
на координатные оси x, y, z, получаем шесть составляющих: три силы Nz , Qx , Qy и три момента Mz , Mx , My , называемых внутренними силовыми факторами в сечении бруса.
Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My —изгибающими моментами относительно осей x и y, соответственно.
При известных внешних силах все шесть внутренних силовых факторов в сечении определяются из шести уравнений равновесия, которые могут быть составлены для отсеченной части.
Пусть R * , M * — результирующая сила и результирующий момент, действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид:
(1.3)
Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат:
(1.4)
которые, в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: ,
,
,
,
,
.
Рис. 1.5
Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела.
В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют — такие виды нагружения бруса получилиспециальные названия (табл.1.1).
Таблица 1.1. Простейшие случаи сопротивления
Вид напряженного состояния | Nz | Qx | Qy | Mz | Mx | My |
Растяжение/сжатие | + | |||||
Кручение | + | |||||
Чистый изгиб относительно оси х | + | |||||
Чистый изгиб относительно оси у | + | |||||
Поперечный изгиб относительно оси х | + | + | ||||
Поперечный изгиб относительно оси у | + | + |
Примечание: + означает наличие усилия, 0 — его отсутствие.
Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий (например, изгиб с кручением) сопротивление бруса называется сложным.
В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называются эпюрами.
Источник
НАГРУЗКИ ПО СПОСОБУ ПРИЛОЖЕНИЯ
По способу приложения нагрузки бывают объемными (собственный вес, силы инерции), действующими на каждый бесконечно малый элемент объема, и поверхностными. Поверхностные нагрузки делятся на сосредоточенные нагрузки и распределенные нагрузки.
Распределенные нагрузки характеризуются давлением — отношением силы, действующей на элемент поверхности по нормали к ней, к площади данного элемента и выражаются в Международной системе единиц (СИ) в паскалях, мегапаскалях (1 ПА = 1 Н/м2; 1 МПа = 106 Па) и т.д., а в технической системе – в килограммах силы на квадратный миллиметр и т.д. (кгс/мм2, кгс/см2).
В сопромате часто рассматриваются поверхностные нагрузки, распределенные по длине элемента конструкции. Такие нагрузки характеризуются интенсивностью, обозначаемой обычно q и выражаемой в ньютонах на метр (Н/м, кН/м) или в килограммах силы на метр (кгс/м, кгс/см) и т.д.
НАГРУЗКИ ПО ХАРАКТЕРУ ИЗМЕНЕНИЯ ВО ВРЕМЕНИ
По характеру изменения во времени выделяют статические нагрузки — нарастающие медленно от нуля до своего конечного значения и в дальнейшем не изменяющиеся; и динамические нагрузкивызывающие большие силы инерции.
Вопрос
1. Брус — любое тело, у которого длина значительно больше других размеров.
В зависимости от форм продольной оси и поперечных сечений различают несколько видов брусьев:
— прямой брус постоянного поперечного сечения (рис. 4.4, а);
— прямой ступенчатый брус (рис. 4.4, 6);
— криволинейный брус (рис. 4.4, в).
2. Пластина — любое тело, у которого толщина значительноменьше других размеров (рис.4.5).
3. Массив — тело, у которого три размера одного порядка.
Вопрос
Метод сечений позволяет определить внутренние силы, которые возникают в стержне, находящемся в равновесии под действием внешней нагрузки.
Рассмотрим идеально упругий призматический стержень прямоугольного поперечного сечения (рис. 1.2, а).
Выделим внутри стержня какие-либо две частицы K и L, расположенные на бесконечно малом расстоянии друг от друга. Для большей наглядности предположим, что между этими частицами имеется некоторая пружинка, удерживающая их на определенном расстоянии друг от друга. Пусть натяжение пружинки равно нулю.
Приложим теперь к стержню растягивающую силу
(рис. 1.2, б). Пусть в результате деформации стержня, частица K перейдет в положение
, а частица L – в положение
. Соединяющая эти частицы пружинка при этом растянется. После снятия внешней нагрузки частицы вернутся в первоначальное положение K и Lблагодаря усилию, которое возникло в пружинке. Сила, которая возникла между частицами (в пружинке) в результате деформации идеально упругого стержня, называются силой упругости или внутренней силой. Она может быть найдена методом сечений.
ВНУТРЕННИЕ СИЛЫ В МЕТОДЕ СЕЧЕНИЙ
Полученную бесконечную систему сил по правилам теоретической механики можно привести к центру тяжести поперечного сечения. В результате получим главный вектор R и главный момент M (рис. 1.3, в).
Разложим главный вектор и главный момент на составляющие по осям x, y (главные центральные оси) и z.
Получим 6 внутренних силовых факторов, возникающих в поперечном сечении стержня при его деформировании: три силы (рис. 1.3, г) и три момента
(рис. 1.3, д).
Сила N — продольная сила
– поперечные силамы,
момент относительно оси z ( ) – крутящий момент
моменты относительно осей x, y ( ) – изгибающие моменты.
Запишем для оставленной части тела уравнения равновесия (уравновесим):
.
Из уравнений определяются внутренние усилия, возникающие в рассматриваемом поперечном сечении стержня.
Вопрос
Переменное напряжение
Напряжения, переменные во времени, возникающие в элементах конструкции под действием нагрузок, переменных по величине или направлению, а также нагрузок, перемещающихся относительно рассматриваемого элемента.
Допускаемое напряжение
Экспериментально установленное для рассматриваемого материала предельное значение напряжения, деленное на коэффициент запаса прочности.
Главное напряжение
Среди множества площадок, которые можно провести через исследуемую точку, имеются три взаимно перпендикулярные площадки, касательные напряжения на которых отсутствуют. Эти площадки и возникающие на них нормальные напряжения называются главными.
Источник