По способу питания прокариоты бывают

Типы питания прокариот. Группы микроорганизмов по типу питания

В отличие от растительных и животных организмов, имеющих один вполне определенный тип питания – соответственно автотрофный и гетеротрофный, прокариоты характеризуются многообразием типов питания. Поэтому для характеристики типов питания трокариотных организмов используются одновременно три критерия: источник углерода, источник энергии и донор электронов (водорода).

По источнику углерода прокариоты являются автотрофами, если они получают углерод в результате фиксации углекислого газа, и гетеротрофами, если источником углерода для них служат органические соединения.

По источнику энергии прокариоты, использующие солнечный свет, называются фототрофами, а получающие энергию за счет окислительно-восстановительных реакций – хемотрофами.

И наконец, по донору электронов прокариоты подразделяются на литотрофы, обладающие способностью использовать неорганические вещества, органотрофы, использующие в качестве доноров электрона органические соединения.

По трем вышеуказанным критериям выделяют 4 основных типа питания прокариот: фотолитоавтотрофы, фотоорганоавтотрофы хемолитоавтотрофы и хемоорганогетеротрофы (таблица 1).

Различают следующие типы гетеротрофии: паразитизм облигатный внутриклеточный, паразитизм факультативный, сапрофитизм.

Организмы, которые могут жить только внутри других организмов, имеют редуцированный метаболизм, зависят от метаболизма хозяина, являются облигатными внутриклеточными паразитами.

Факультативные паразиты-организмы, способные расти вне клетки хозяина при подходящих условиях, на питательных средах.

Сапрофиты – гетеротрофные организмы, нуждаются в готовых органических веществах, непосредственно от организмов не зависят.

Сапрофиты нуждаются в разных концентрациях органических веществ. Олиготрофы – способны расти при низких концентрациях органического вещества (1–15 мг углерода в литре раствора). Копиотрофы – предпочитают высокие концентрации питательных веществ (10 грамм углерода в литре раствора).

Дата добавления: 2015-08-14 ; просмотров: 4897 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Типы питания прокариот

Прокариоты характеризуются многообразием типов питания в отличие от растений (автотрофы) и животных (ге- теротрофы). Для характеристики типов питания используют три критерия: источник углерода, источник энергии, донор электронов (водорода). По источнику углерода делят на ав- тотрофы и гетеротрофы, по источнику энергии – на фото- трофы (используют солнечный свет) и хемотрофы (получа- ют энергию за счет окислительно-восстановительных реак- ций), по донору – электроны (водорода) на литотрофы (неорганические соединения Н2, NH3, H2S, Fe2 + , CO и др.) и органотрофы (используют в качестве донора электрона ор- ганические соединения). Таким образом, выделяют 4 основных типа питания прокариот: фотолитоавтотрофы, фотоорганоавтотрофы, хемолитоавтотрофы, хемоорганоге- теротрофы.

Фотолитоавтотрофы. Бактериальный фотосинтез (фоторедукция). В 1931 г. К. ван Ниль впервые доказал способность бактерий к фотосинтезу. В основе бактериального фотосинтеза лежит превращение световой энергии, поглощаемой фотосинтетическим пигментом, в биохимическую энергию макроэргических связей (АТФ) и далее использо- вание этой энергии для восстановления углекислого газа в процессе биосинтеза. У этих организмов есть пигмент бак- териохлорофилл. В клетках всех фотосинтезирующих бактерий содержатся фотосинтетические пигменты. К ним относятся особые хлорофиллы, получившие название бактериохлорофиллов а, в, с, d, и каротиноиды. По строению бактерио- хлорофиллы близки к хлорофиллу а растений. Так, бакте- риохлорофилл а отличается от хлорофилла а растений тем, что в первом его пирольном кольце в положении 2 стоит ацетильная группа СН3-СО- вместо обычной винильной группы СН2=СН-, а второе пирольное кольцо восстановле- но и содержит на два атома водорода больше. Содержание в клетке фотосинтезирующих прокариот четырех видоизменений бактериохлорофилла обусловли- вает более широкую полосу спектра поглощения световой энергии по сравнению с хлорофиллом растений. Предел спектра поглощения хлорофилла растений лежит в области 700-780 нм, в то время как фотосинтезирующие бактерии используют световую энергию длинноволновой части спектра до 1100 нм. Разница в спектрах поглощения хлоро- филлов растений и бактериохлорофиллов фотосинтезиру- ющих бактерий расширяет экологические ниши последних и позволяет фотосинтезирующим бактериям развиваться в водоемах под слоем водорослей. Помимо бактериохлорофиллов, в клетках фотосинтезирующих бактерий открыты более 20 дополнительных каро- тиноидных пигментов. Особенно разнообразны каротинои- ды в клетках пурпурных бактерий. Каротиноиды фотосин- тезирующих бактерий поглощают световую энергию ко- ротковолновой видимой области спектра с длиной волны 400-550 нм и передают эту энергию на бактериохлоро- филл. В клетке прокариот фотосинтетические пигменты нахо- дятся на инвагинациях ЦПМ – хроматофорах, визикулах (пузырьках), трубочках, тиллакоидах, ламеллах. Ван Ниль назвал этот процесс бактериальным фотосин- тезом, или фоторедукцией.

Для восстановления одной молекулы углекислого газа требуется 1 молекула АТФ (у растений 4 АТФ). В том и другом случае идет восстановление углекислого газа до углеводов. В Определителе Берджи (1974) фотосинтезирующие бактерии представлены тремя семействами (см. выше).

Фотоорганоавтотрофы Фотоорганоавтотрофы представлены немногочисленным семейством Rhodospirillaceae, включающим три рода: Rhodospirillum, Rhodopseudomonas и Rhodomicrobium. Бактерии-фотоорганоавтотрофы способны перестраивать свой обмен и одинаково успешно развиваться как на свету, так и в темноте, переходя соответственно от ана- эробного образа жизни к аэробному. На свету они ведут себя как фотоорганоавтотрофы: усваивая углекислый газ, они восстанавливают его в процессе фотосинтеза до углевода. В качестве доноров электронов несерные пурпурные бактерии используют различные органические вещества — сахара, спирты, органические кислоты, аминокислоты. Характер использования органических веществ различными фотосинтезирующими бактериями существенно раз- личается. Чаще всего органическое вещество выполняет единственную функцию донора электронов при фотоасси- миляции углекислого газа. Однако в некоторых случаях органическое вещество используется фотосинтезирующими бактериями не только в качестве донора электронов, но одновременно и как источник углерода. Попадая в темноту, пурпурные бактерии переходят к хемоорганогетеротрофному типу питания. При этом энергию для процессов жизнедеятельности они получают за счет реакций окисления органического субстрата по циклу Кребса. Непосредственным источником углерода и донором электронов для них являются органические соедине- ния субстрата. В клетках бактерий этой группы имеется универсальный набор дыхательных ферментов (НАД- и ФАД-дегидрогеназы и цитохромы), обеспечивающих им возможность перехода от анаэробного образа жизни на свету к аэробному в темноте и, соответственно, от авто трофного типа питания к гетеротрофному. Таким образом, среди разных групп прокариот нет, да и не может быть, резкой границы между различными типами питания.

ХемолитоавтотрофыХемолитоавтотрофы представлены микроорганизмами, способными в качестве основного источника углерода усваивать углекислый газ и синтезировать в клетке органические соединения, используя энергию реакций окисления неорганического субстрата. Для хемолитоавтотрофов неорганические вещества субстрата выступают донорами электронов в реакциях энергетического метаболизма и в процессе хемоассимиляции углекислого газа. Заслуга открытия процесса хемосинтеза принадлежит С. Н. Виноградскому. Он определил химизм как жизнь без органики. Им впервые была показана возможность образования органических веществ из неорганических в клетках бактерий, помимо процесса фотосинтеза. К хемолитоавтотрофам относится большинство видов нитрифицирующих, тионовых бактерий, некоторые виды из группы одноклеточных железобактерий и водородные бактерии. Хемолитоавтотрофные бактерии характеризуются специфичностью в отношении использования окисляемого субстрата. Нитрифицирующие бактерии для процесса хемоассимиляции углекислого газа получают энергию от окисления аммиака и нитритов. Процесс нитрификации проходит в две фазы. Первая фаза заключается в аэробном окислении аммиака до нитритов нитрозными бактериями родов Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira: NН3 + 11 /202 = HN02 + Н2О + 274,7 кДж. Вторая фаза нитрификации предусматривает окисление нитритов в нитраты нитратными бактериями родов Nitrobacter, Nitrospina, Nitrococcus: HN02 + 11 /202 =НNО3 + 87,5 кДж. При процессах окисления неорганического субстрата выделяется сравнительно небольшое количество энергии, и усваивается она клеткой с низким КПД, всего 5-10%. Поэтому для получения энергии на процессы жизнедеятельности нитрифицирующим бактериям приходится перерабатывать огромное количество субстрата. К хемолитоав- тотрофам относится большинство видов тионовых бактерий: Thiobacillus denitrificans, Т. thiooxidans, Т. acidophilus, Thiomicrospira pelophila и др. Они ведут процесс хемоасси- миляции углекислого газа, получая энергию за счет окисления восстановленных или частично восстановленных соединений серы, сероводорода, элементарной серы, тиосульфата и сульфита. Конечным продуктом окисления обычно является сульфат.

Читайте также:  Способы приготовления цыпленка табака

Некоторые виды тионовых бактерий (Thiobacillus ferrooxidans) способны получать энергию за счет окисления не только соединений серы, но и закисного железа (Fe2+) (разрушение труб). Хемолитоавтотрофный тип питания характерен для некоторых одноклеточных ацидофильных железобактерий – Leptospirillum ferrooxidans, Thiobacillus ferrooxidans и представителей рода Sulfolobus. Оптимальный рост ацидофильных железобактерий наблюдается при рН ниже 4,5 (2-3). Они используют энергию окисления Fe2+ до Fе3+ для ассимиляции С02, который служит основным или единственным источником углерода. Реакции окисления железа сопровождаются незначительным выделением энергии, поэтому железобактерии перерабатывают большие количества субстрата: 2Fe2+ + 1/202 + 2Н+ = 2FеЗ+ + Н2О + 33 кДж. Хемолитоавтотрофные бактерии в природе являются геологическими агентами. Они принимают участие в процессах образования полезных ископаемых и осуществляют важнейшие звенья круговорота азота, серы, железа. К факультативным хемолитоавтотрофам относятся водородные бактерии, являющиеся представителями 20 различных родов – Рsеudоmоnаs, Аlcаligеnеs, Nocardia и др. Они способны осуществлять ферментативное окисление водорода кислородом воздуха с образованием воды. Водородные бактерии ферментом дегидрогеназой активируют молекулярный водород и далее используют его для получения энергии и в качестве донора электронов для восстановления углекислого газа до углевода: 6Н2 + 202 + С02 = (СН2О) + 5Н2О. Являясь факультативными хемолитоавтотрофами, водородные бактерии в качестве источника энергии и углеро- да способны использовать и различные органические со- единения (сахара, органические кислоты, спирты). Таким образом, водородные бактерии могут служить еще одним 87 примером возможного перехода микробной клетки от одного типа питания к другому – от хемолитоавтотрофного к хемоорганогетеротрофному. Бактерии, переходящие от одного типа питания к другому, получили название миксо- трофов.

Хемоорганогетеротрофы. К хемоорганогетеротрофам относится большинство прокариот. Источником углерода для них являются самые разнообразные органические соединения. Энергию для жизнедеятельности они получают за счет окислительно- восстановительных реакций органического субстрата, и донором электронов в реакциях метаболизма также выступают различные органические вещества. Хемоорганогетеротрофы наиболее широко распространены в природе. Им принадлежит роль санитаров нашей планеты, так как они ведут процессы минерализации самых разнообразных, подчас сложных органических веществ. Помимо органических соединений как источника углерода, хемоорганогетеротрофы нуждаются в углекислом газе для реакций карбоксилирования промежуточного обмена. Хемоорганогетеротрофные микроорганизмы подразделяют на сапрофитов и паразитов. Сапрофиты потребляют органические вещества опада. Паразиты живут за счет органических веществ живой клетки. Выделяют факультативных и облигатных паразитов. Факультативные паразиты развиваются на обычных органических средах, но, попадая в клетку-хозяина, переходят к паразитическому образу жизни. К ним относится большинство патогенных бактерий, вызывающих заболевания человека, – возбудители пневмонии, менингита, гонореи, дизентерии, брюшного тифа, сибирской язвы, коклюша, туберкулеза и др. Облигатные (строгие) паразиты развиваются исключительно за 88 счет органических веществ клетки-хозяина. Типичным примером облигатных паразитов являются риккетсии и вирусы. В основе всех вышерассмотренных типов питания прокариот лежат различные сочетания их энергетического и конструктивного метаболизма. Всем типам питания соот- ветствуют определенные группы прокариотных организ- мов. Основной массе бактерий присущ один вполне определенный (облигатный) тип питания. Однако среди многообразного мира прокариот встречается много видов бактерий, способных переходить от одного типа питания к другому. Так, среди цианобактерий, зеленых и пурпурных бактерий имеются виды, переходящие от фотолитоавто- трофного типа питания к фотоорганогетеротрофному. Некоторые виды обширного рода Thiobacillus способны переходить от хемолитоавтотрофного типа питания к хемоорга- ногетеротрофному. Эта особенность питания прокариот обусловливает широкие возможности существования микроорганизмов в различных условиях среды и значительно расширяет их экологические ниши.

Источник

Питание прокариот. Химический состав клетки прокариот

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

ПИТАНИЕ ПРОКАРИОТ

ХИМИЧЕСКИЙ СОСТАВ ПРОКАРИОТНОЙ КЛЕТКИ

Вода в клетке прокариот составляет 80—90% от обшей массы.

На долю сухого вещества в прокариотной клетке прихо­дится 10—20% от общей массы.

Элементарный состав сухих веществ прокариотной клетки ха­рактеризуется следующими данными (в % к сухой массе):

угле­род— 50, кислород — 20, азот— 10—— 15, водород— 10, фосфор — 2—6, остальную часть составляют сера и прочие элементы (К, Na, Ca, Mg, Fe, Mn, Mo и др.).

На долю белков приходится 50—80% сухой массы, углеводы -3-10%, липиды – 3-4%.

По химическому составу белки прокариот почти не отличают­ся от белков эукариот. В состав белков прокариот входят 20 амино­кислот. Из специфических аминокислот в клетках бактерий обнару­жены диаминопимелиновая и диаминомасляная кислоты.

Нуклеиновые кислоты в клетке прокариот представлены ДНК и РНК- Последняя сосредоточена в цитоплазме и составляет око­ло 16% сухой массы. ДНК образует нуклеоид и в клетках некото­рых бактерий плазмиды. На долю ДНК приходится примерно 3—4% cyxoй массы.

Углеродное питание Бактерий.

По источнику углерода для конструктивного обмена все прока­риоты делятся на две группы: автотрофы, потребляющие в каче­стве главного источника углерода углекислый газ, и гетеротрофы, усваивающие углерод из органических соединений.

Автотрофы делятся на фототрофов, фоторедукторов, хемотрофов.

1. Фототрофы.

Синтезируют органическое вещество из СО2 и Н2О с помощью энергии солнца. Фотосинтез идет обычным путем. Процесс фотосинтеза осуществляется 2 группами бактерий: цианобактериями и прохлорофитами. У них есть н6абор пигментов.

Для боль­шинства гетеротрофов оптимальным и наиболее доступным источ­ником углерода служат углеводы. Рассмотрим хемосинтез на примере азотофиксирующих бактерий. Они обитают в почве и окисляют NH3 до HNO3, а затем до HNO2.

Гетеротрофы делятся на сапрофитов и паразитов. Сапрофиты используют С мертвых органических остатков. Паразиты – питаются орг. Соед. Живых организмов. Паразиты бывают облигатные (обязательные – вирусы, риккетсии) и факультативные (все виды болезнетворных бактерирй).

Помимо углеводов, хорошим источником углерода для многих бактерий являются многоатомные спирты и аминокислоты. Неко­торые виды прокариот способны усваивать углерод из органиче­ских кислот.

Читайте также:  Кофе жокей ирландские сливки молотый способ приготовления

Азот

Для синтеза аминокислот, пуриновых и лйримидииовых нуклеотидов бактериям необходим азот. В природе азот встречается в форме окисленных и восстановленных соединений, а также в виде молекулярного азота атмосферы.

Большинство прокариот потребляют азот в восстановленной форме в виде солей аммония (NH4+) и аммиака (NH3). Многие бактерии используют органические азотсодержащие вещества — белки, аминокислоты, мочевину, разрушая их с выделением ам­миака. Окисленные формы азота — нитриты, нитраты — также усваиваются различными группами бактерий. Среди прокариот из­вестно большое число организмов — бактерий, актиномицетов, сине-зеленых водорослей, способных фиксировать молекулярный азот атмосферы для построения всех необходимых компонентов клетки.

Фосфор в клетках прокариот входит в состав важнейших ор­ганических соединений — нуклеиновых кислот, фосфолипидов, ко-ферментов. Такие соединения фосфора, как АДФ и АТФ, являются аккумуляторами энергии клетки и играют важную роль в метабо­лизме. Источником фосфора для бактерий в основном служат фос­фаты калия или натрия, а из органических соединений нуклеино­вые кислоты.

Сера в клетке прокариот в основном встречается в восста­новленной форме и входит в состав аминокислот, витаминов и кофакторов (биотин, кофермент А и др.). Наиболее важным ком­понентом, содержащим серу, является цистеин. Атомы серы в большинстве других содержащих серу соединений клетки (метио-нин, биотин, тиамин) происходят из SH-группы цистеина. Ис­точником серы для большинства микроорганизмов служат сульфа­ты, которые в клетке восстанавливаются в сульфиды. Некоторые бактерии нуждаются в соединениях, содержащих серу в восста­новленной форме, таких, как сероводород, тиосульфат, цистеин и метионин.

Для нормального роста и развития прокариот необходимы ионы металлов, представленные макроэлементами, такими, как калий, кальций, магний, железо, и микроэлементами. К послед­ним относятся марганец, молибден, цинк, медь, кобальт, никель и др. Ионы металлов входят в состав жизненно важных метаболи­тов бактериальной клетки. Так, кобальт является активатором ферментов транспорта электронов в окислительно-восстановитель­ных реакциях цикла Кребса. Железо и молибден необходимы бак­териям для синтеза ферментов, участвующих в процессе азот-фиксации.

Особого внимания заслуживает магний, так как, помимо активации ферментов, таких, как гексокиназа, он определяет аг­регацию мономеров рибосомы.

Факторы роста, факторами роста называются органические соединения, которые не синтезируются многими прокариотными организмами, но без которых жизнь клетки оказывается невоз­можна. К таким соединениям относятся аминокислоты, пурины, пиримидины, витамины и др. Эти соединения прокариоты должны получать из среды.

Бактерии, нуждающиеся в каком-либо факторе роста, назы­ваются ауксотрофными по отношению к этому соединению, в отли­чие от прототрофных, способных синтезировать данное вещество в клетке.

Прокариоты существенно различаются по потребностям в фак­торах роста. Например, молочнокислые бактерии ауксотрофны ко многим аминокислотам, пуринам, пиримидинам и 5—б витаминам, в то время как различные штаммы Escherichia coll проявляют ауксотрофность к какому-либо одному, но разному фактору роста.

МЕХАНИЗМ ПОСТУПЛЕНИЯ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ В КЛЕТКУ ПРОКАРИОТ

Избирательное поступление веществ питательного субстрата в клетку прокариот регулируется цитоплазматической мембраной. ь Клеточная стенка служит вторым барьером на пути проникновения веществ в клетку. Она задерживает некоторые крупномолекуляр­ные соединения питательного субстрата, например такие, как декстраны. У некоторых бактерий клеточная стенка обладает из­бирательной проницаемостью для низкомолекулярных соединений, основанной на взаимном притяжении разнозаряженных частиц.

Цитоплазматическая мембрана клетки несет ответственность за поступление воды и веществ питательного субстрата в клетку и определяет выход продуктов обмена наружу. В настоящее вре­мя изучено несколько механизмов переноса веществ субстрата через цитоплазматическую мембрану в клетку прокариот.

Пассивная диффузия — процесс поступления воды и некото­рых растворенных веществ через цитоплазматическую мембрану в цитоплазму клетки по градиенту концентрации, от большей концентрации к меньшей для неэлектролитов или по градиенту электрических потенциалов для ионов. Скорость пассивной диф­фузии невелика, и проходит она без затраты энергии.L

Облегченная диффузия отличается от пассивной тем, что пе­ренос веществ субтрата через цитоплазматическую мембрану осу­ществляется белками-переносчиками, получившими название пермеаз (транслоказ). Пермеаза катализирует присоединение вещества субстрата к активному центру на своей поверхности и проводит это вещество с наружной поверхности цитоплазматической мембраны на внутреннюю. Там пермеаза освобождается от этого вещества, передавая его в цитоплазму, а сама вновь вступает во взаимодей­ствие с новой порцией субстрата.

Пермеазные белки синтезируются и локализуются на цито­плазматической мембране.

Активный транспорт заключается в переносе веществ субстра­та пермеазньми белками через цитоплазматическую мембрану в цитоплазму против градиента концентрации. Процесс активного транспорта веществ всегда осуществляется с затратой энергии. Учитывая, что на перенос одной молекулы субстрата через цито­плазматическую мембрану клетка расходует одну молекулу АТФ, можно предполагать, что растущий и быстро размножающийся микроорганизм затрачивает значительную часть вырабатываемой энергии на транспорт веществ.

Необходимым условием поступления веществ субстрата в клетку бактерий является их растворимость в воде.

Вещества питательного субстрата, поступающие в клетку, являются источником энергетического метаболизма и одновремен­но строительным материалом для синтеза клеточных структур. Выход продуктов обмена из клетки осуществляется чаще все­го путем облегченной диффузии при участии белков-переносчиков.

ТИПЫ ПИТАНИЯ ПРОКАРИОТ

В отличие от растительных и животных организмов, имеющих один вполне определенный тип питания — соответственно автотрофный и гетеротрофный, прокариоты характеризуются многообрази­ем типов питания. Поэтому для характеристики типов питания прокариотных организмов используются одновременно три кри­терия; источник углерода, источник энергии и донор электронов (водорода).

Как указывалось выше, по источнику углерода прокариоты являются автотрофами, если они получают углерод в результате фиксации углекислого газа, и гетеротрофами, если источником углерода для них служат органические соединения.

По источнику энергии прокариоты, использующие солнечный свет, называются фототрофами, а получающие энергию за счет окислительно-восстановительных реакций хемотрофами.

И наконец, по донору электронов прокариоты подразделяют­ся на литотрофы, обладающие способностью использовать неор­ганические доноры электронов (H2S, Fe 2 +, СО и т. д.), и органотрофы, использующие в качестве доноров электронов органические соединения.

По трем вышеуказанным критериям выделяют 4 основных ти­па питания прокариот: фотолитоавтотрофы, фотоорганоавтотрофы, хемолитоавтотрофы и хемоорганогетеротрофы (табл. 6).

Тип питания Источник углерода Источник Донор электронов Представители прокариот
Фотолито­автотрофы СО2 Свет Н2О Неорганические соединении (H2S, S, Na2S) Цианобактерии. Зеленые, серные пурпур­ные бактерии
Фотооргано­автотрофы СО2 и органичес­кие соеди­нения Свет Органические сое­динения (спирты, органические кис­лоты и др.) Некоторые пурпурные бактерии
Хемолито­автотрофы СО, Реакции окисления неоргани­ческих ве­ществ Неорганические соединении (Н2, H,S, NH2, Fe2+ и др.) Нитрифицирующие, тионовые, водородные бак­терии; ацидофильные железобактерии
Хемооргано­гетеротрофы Органичес­кие соеди­нения Реакции окисления opганических веществ Органические сое­динения Большинство бактерий (аммонификаторы, азотфиксаторы, пектино-разрушающие, клетчат-коразрушающие, молоч­нокислые, уксуснокис­лые, маслянокислые и ДР-)

Фотолитоавтотрофы. Бактериальный фотосинтез.

К группе фотолитоавтотрофов относятся прокариоты, использующие в качестве источника углерода CO2, а в качестве донора электронов различные неорганические соединения (Н2О, H2S, S и др.). Усваивая энер­гию солнечного света в процессе фотосинтеза, они образуют ор­ганические вещества клетки (табл. 6). Фотолитоавтотрофы пред­ставлены цианобактериями (сине-зелеными водорослями), зеле­ными и серными-пурпурными бактериями.

Читайте также:  Способы получения неметаллов 7 группы

В основе процесса бактериального фотосинтеза лежит пре­вращение световой энергии, поглощаемой фотосинтетическими пиг­ментами, в биохимическую энергию макроэргических связей (АТФ) и далее использование этой энергии для усвоения и восстанов­ления углекислого газа в процессе биосинтеза.

В клетках всех фотосинтезирующих бактерий содержатся фо­тосинтетические пигменты. К ним относятся особые хлорофиллы, получившие название бактериохлорофиллов а, b, с, d, и каротиноиды. По строению бактериохлорофиллы близки к хлорофиллу а растений.

Помимо бактериохлорофиллов в клетках фотосинтезирующих бактерий открыты более 20 дополнительных каротиноидных пигментов.

В клетке прокариот фотосинтегические пигменты локализу­ются на внутриклеточных инвагинациях цитоплазматической мемб­раны, получивших название хроматофоров. У разных типов бак­терий инвагинации иитоплазматической мембраны имеют различную форму — пузырьков (везикул), трубочек и тилакоидов, образо­ванных стопками ламелл, напоминающих тилакоиды хлоропластов растений (рис. 2).

По химизму фотосинтез бактерий существенно отличается от фотосинтеза растений. При фотосинтезе растений и цианобактерий донором электронов является вода и процесс фотосинтеза обязательно сопровождается выделением кислорода. Причем расти­тельная клетка для восстановления одной молекулы углекислого газа потребляет 4 кванта энергии:

CO2 + H2O — (CH2O) + O2

В процессе фотосинтеза зеленых и пурпурных бактерий в ка­честве доноров электронов выступают различные соединения: се­роводород, элементарная сера, сульфит, тиосульфат, молекулярный водород и органические вещества. Кислород при фотосинтезе зе­леных и пурпурных бактерий не выделяется. Они являются облигатными анаэробами, исключение составляет лишь немногочислен­ная группа несерных пурпурных бактерий, относящихся к факуль­тативным анаэробам. Для восстановления одной молекулы угле­кислого газа зеленые и пурпурные бактерии затрачивают один квант энергии:

где Н2А — донор водорода.

Суть процессов бактериального фотосинтеза и фотосинтеза рас­тений принципиально одинакова и заключается в восстановлении углекислого газа до соединения типа углеводов (СНэО).

Представители семейств Chlorobacteriaceae и Chrornatiaceae по типу питания преимущественно являются фотолитоавтотрофами. В качестве донора электронов они чаще всего используют сероводород, окисляя его до свободной серы или до сульфатов.

У зеленых бактерий сера обычно выделяется в среду, у сер­ных пурпурных бактерий — откладывается в клетке. При отсутст­вии сероводорода в среде серные пурпурные и зеленые бактерии способны окислять элементарную серу, используя ее источником электронов.

Помимо сероводорода и серы зеленые и серные пурпурные бак­терии донором электронов используют такие соединения, как суль­фит H2SO3, тиосульфат Na

Фотоорганоавтотрофы.

Фотоорганоавтотрофы представлены не­многочисленным семейством Rhodospirillaceae, включающим три рода: Rhodospirillum, Rhodopscudomonas и Rhodomicrobium.

Бактерии-фотоорганоавтотрофы способны перестраивать свой обмен и одинаково успешно развиваться как на свету, так и в темноте, переходя соответственно от анаэробного образа жизни к аэробному. На свету они ведут себя как фотоорганоавтотрофы: усваивая углекислый газ, они восстанавливают его в процессе фотосинтеза до углевода, В качестве доноров электронов несер­ные пурпурные бактерии используют различные органические ве­щества — сахара, спирты, органические кислоты, аминокислоты (табл. 6). Например, бактерии Rhodopseudomonas используют в процессе фотосинтеза донором электронов изопропанол, окисляя его в ацетон.

Характер использования органических веществ различными фотосинтезирующими бактериями существенно различается. Чаще всего органическое вещество выполняет единственную функцию — донора электронов при фотоассимиляции углекислого газа. Од­нако в некоторых случаях органическое вещество используется фотосинтезирующими бактериями не только в качестве донора электронов, но одновременно и как источник углерода.

Рис. 23. Фотосинтезирующие бактерии. I — Rhodospirillum; 2—Rhodomicrobium; 3 — Chromatium; 4 — Tliiopedia; 5 —Chlorobium, 6— Pelodictyon.

Попадая в темноту, несерные пурпурные бактерии переходят к хемоорганогетеротрофному типу питания. При этом энергию для процессов жизнедеятельности они получают за счет реакций окис­ления органического субстрата по циклу Кребса. Непосредствен­ным источником углерода и донором электронов для них являются органические соединения субстрата.

Хемолитоавтотрофы.

Хемолитоавтотрофы представлены микро­организмами, способными в качестве основного источника угле­рода усваивать углекислый газ и синтезировать в клетке орга­нические соединения, используя энергию реакций окисления не­органического субстрата. Для хемолитоавтотрофов неорганиче­ские вещества субстрата выступают донорами электронов в реак­циях энергетического метаболизма и в процессе хемоассимиляции углекислого газа (табл. 6).

Заслуга открытия процесса хемосинтеза принадлежит С. Н. Виноградскому.

К хемолитоавтотрофам относится большинство видов нитрифи­цирующих, тионовых бактерий, некоторые виды из группы одно­клеточных железобактерий и водородные бактерии.

Хемолитоавтотрофные бактерии характеризуются специфично­стью в отношении использования окисляемого субстрата. Нитрифи­цирующие бактерии для процесса хемоассимиляции углекислого газа получают энергию от окисления аммиака и нитритов. Про­цесс нитрификации проходит в две фазы. Первая фаза заключается в аэробном окислении аммиака до нитритов нитрозными бакте­риями родов Nitrosomonas, Nitrosococcus, Nitrosolobus, Nitrosospira.

Вторая фаза нитрификации предусматривает окисление нитри­тов в нитраты нитратными бактериями родов Nitrobacter, Nitrospina, Nitrococcus.

При процессах окисления неорганического субстрата выделя­ется сравнительно небольшое количество энергии, и усваивается она клеткой с низким КПД, всего 5—10%. Поэтому для получения энергии на процессы жизнедеятельности нитрифицирующим бакте­риям приходится перерабатывать огромное количество субстрата.

К хемолитоавтотрофам относится большинство видов тионовых бактерий:. Они ведут процесс хемоассимиляции углекислого газа, получая энергию за счет окисления восстанов­ленных или частично восстановленных соединений серы, сероводорода, элементарной серы, тиосульфата и сульфита. Конечным про­дуктом окисления обычно является сульфат.

Хемолитоавтотрофный тип питания характерен для некоторых одноклеточных ацидофильных железобактерий —Они используют энергию окис­ления Fe 2+ до Fe 4+ для ассимиляции СО2, который служит основным или единственным источником углерода. Реакции окисления желе­за сопровождаются незначительным выделением энергии, поэтому железобактерии перерабатывают большие количества субстрата.

Хемолитоавтотрофные бактерии в природе являются геологи­ческими агентами. Они принимают участие б процессах образо­вания полезных ископаемых и осуществляют важнейшие звенья круговорота азота, серы, железа.

Хемоорганогетеротрофы.

К хемоорганогстеротрофам относит­ся большинство прокариот. Источником углерода для них являют­ся самые разнообразные органические соединения. Энергию для жизнедеятельности они получают за счет окислительно-восстано­вительных реакций органического субстрата, и донором электро­нов в реакциях метаболизма также выступают различные органи­ческие вещества (табл. 6).

Хемоорганогетеротрофы наиболее широко распространены в природе. Им принадлежит роль санитаров нашей планеты, так как они ведут процессы минерализации самых разнообразных, подчас сложных органических веществ. Помимо органических соединений, как источника углерода, хемоорганогетеротрофы нуждаются в углекислом газе для реакций карбоксилирования промежуточного обмена.

Хемоорганогетеротрофные микроорганизмы подразделяют на сапрофитов и паразитов. Сапрофиты потребляют органические ве­щества опада. Паразиты живут за счет органических веществ жи­вой клетки. Выделяют факультативных и облигатных паразитов. Факультативные паразиты развиваются на обычных органических средах, но, попадая в клетку-хозяина, переходят к паразитиче­скому образу жизни. К ним относится большинство патогенных бактерий, вызывающих заболевания человека,— возбудители пне­вмонии, менингита, гонореи, дизентерии, брюшного тифа, сибир­ской язвы, коклюша, туберкулеза и др. Облигатные (строгие) паразиты развиваются исключительно за счет органических ве­ществ клетки-хозяина. Типичным примером облигатных паразитов являются риккетсии и вирусы.

Источник

Оцените статью
Разные способы