По способу формирования решения экспертные системы могут быть

Экспертная система

Материал из ПИЭ.Wiki

Экспертная система — это система искусственного интеллекта, построенная на основе глубоких специальных знаний о некоторой предметной области (полученных от экспертов-специалистов этой области). Экспертные системы – один из немногих видов систем искусственного интеллекта, которые получили широкое распространение и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Технология экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта (Artificial Intelligence — AI). Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ, способных эмулировать (имитировать, воспроизводить) те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта. К ним относятся задачи принятия решений, распознавания образов и понимания человеческого языка. Эта технология уже успешно применяется в некоторых областях техники и жизни общества — органической химии, поиске полезных ископаемых, медицинской диагностике. Перечень типовых задач, решаемых экспертными системами, включает:

  • извлечение информации из первичных данных (таких как сигналы, поступающие от гидролокатора);
  • диагностика неисправностей (как в технических системах, так и в человеческом организме);
  • структурный анализ сложных объектов (например, химических соединений);
  • выбор конфигурации сложных многокомпонентных систем (например, распределенных компьютерных систем);
  • планирование последовательности выполнения операций, приводящих к заданной цели (например, выполняемых промышленными роботами).

Содержание

Особенности экспертных систем

  • компетентность – в конкретной предметной области экспертная система должна достигать того же уровня, что и специалисты-люди; при этом она должна пользоваться теми же эвристическими приемами, также глубоко и широко отражать предметную область;
  • символьные рассуждения – знания, на которых основана экспертная система, представляют в символьном виде понятия реального мира, рассуждения также происходят в виде преобразовании символьных наборов;
  • глубина – экспертиза должна решать серьезные, нетривиальные задачи, отличающиеся сложностью знаний, которые экспертная система использует, или обилием информации; это не позволяет использовать полный перебор вариантов как метод решения задачи и заставляет прибегать к эвристическим, творческим, неформальным методам;
  • самосознание – экспертная система должна включать в себя механизм объяснения того, каким образом она приходит к решению задачи.

Экспертные системы создаются для решения разного рода проблем, но они имеют схожую структуру (рис. 8); основные типы их деятельности можно сгруппировать в категории, приведенные в табл. 2.

Рис. 1. Схема обобщенной экспертной системы

Таблица 1. Типичные категории способов применения экспертных систем

Категория Решаемая проблема
Интерпретация Описание ситуации по информации, поступающей от датчиков
Прогноз Определение вероятных последствий заданных ситуаций
Диагностика Выявление причин неправильного функционирования системы по наблюдениям
Проектирование Построение конфигурации объектов при заданных ограничениях
Планирование Определение последовательности действий
Наблюдение Сравнение результатов наблюдений с ожидаемыми результатами
Отладка Составление рецептов исправления неправильного функционирования системы
Ремонт Выполнение последовательности предписанных исправлений
Обучение Диагностика и исправление поведения обучаемого
Управление Управление поведением системы как целого

Функции, выполняемые экспертной системой

Не всякую систему, основанную на знаниях, можно рассматривать как экспертную. Экспертная система должна также уметь каким-то образом объяснять свое поведение и свои решения пользователю, так же, как это делает эксперт-человек. Это особенно необходимо в областях, для которых характерна неопределенность, неточность информации (например, в медицинской диагностике). В этих случаях способность к объяснению нужна для того, чтобы повысить степень доверия пользователя к советам системы, а также для того, чтобы дать возможность пользователю обнаружить возможный дефект в рассуждениях системы. В связи с этим в экспертных системах следует предусматривать дружественное взаимодействие с пользователем, которое делает для пользователя процесс рассуждения системы «прозрачным».

Часто к экспертным системам предъявляют дополнительное требование — способность иметь дело с неопределенностью и неполнотой. Информация о поставленной задаче может быть неполной или ненадежной; отношения между объектами предметной области могут быть приближенными. Например, может не быть полной уверенности в наличии у пациента некоторого симптома или в том, что данные, полученные при измерении, верны; лекарство может стать причиной осложнения, хотя обычно этого не происходит. Во всех этих случаях необходимы рассуждения с использованием вероятностного подхода.

В самом общем случае для того, чтобы построить экспертную систему, мы должны разработать механизмы выполнения следующих функций системы:

  • решение задач с использованием знаний о конкретной предметной области — возможно, при этом возникнет необходимость иметь дело с неопределенностью;
  • взаимодействие с пользователем, включая объяснение намерений и решений системы во время и после окончания процесса решения задачи.

Каждая из этих функций может оказаться очень сложной и зависит от прикладной области, а также от различных практических требований. В процессе разработки и реализации могут возникать разнообразные трудные проблемы. Здесь мы ограничился наметками основных идей, подлежащих в дальнейшем детализации и усовершенствованию.

Структура экспертных систем

Рис.2. Архитектура экспертной системы

Классы экспертных систем

По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

— По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы — генерацию неизвестных решений (формирование объектов).

— По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

— По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

— По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).

Наиболее известные/распространённые ЭС

  • CLIPS — весьма популярная ЭС (public domain)
  • OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов
  • WolframAlpha — поисковая система, интеллектуальный «вычислительный движок знаний»
  • MYCIN — наиболее известна диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях.
  • HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в тихом океане по данным

акустических систем слежения.

Этапы проектирования экспертной системы

В настоящее время сложилась определенная технология разработки ЭС, которая включает следующие шесть этапов:

Рис. 3. Методика (этапы) разработки ЭС

На всех этапах разработки инженер по знаниям играет активную роль, а эксперт — пассивную. По мере развития самообучающихся свойств экспертных систем роль инженера по знаниям уменьшается, а активное поведение заинтересованного в эффективной работе экспертной системы пользователя-эксперта возрастает. Описание приемов извлечения знаний инженерами знаний представлено в таблице 2.

Приемы Описание
1. Наблюдение Инженер наблюдает, не вмешиваясь, за тем, как эксперт решает реальную задачу
2. Обсуждение задачи Инженер на представительном множестве задач неформально обсуждает с экспертом данные, знания и процедуры решения
3. Описание задачи Эксперт описывает решение задач для типичных запросов
4. Анализ решения Эксперт комментирует получаемые результаты решения задачи, детализируя ход рассуждений
5. Проверка системы Эксперт предлагает инженеру перечень задач для решения (от простых до сложных),которые решаются разработанной системой
6. Исследование системы Эксперт исследует и критикует структуру базы знаний и работу механизма вывода
7. Оценка системы Инженер предлагает новым экспертам оценить решения разработанной системы

Первые два этапа разработки экспертной системы составляют логическую стадию, не связанную с применением четко определенного инструментального средства. Последующие этапы реализуются в рамках физического создания проекта на базе выбранного инструментального средства. Вместе с тем, процесс создания экспертной системы, как сложного программного продукта, имеет смысл выполнять методом прототипного проектирования, сущность которого сводится к постоянному наращиванию базы знаний, начиная с логической стадии.

Источник

Представления знаний в интеллектуальных системах, экспертные системы

Введение

Экспертная система (далее по тексту — ЭС) — это информационная система, назначение которой частично или полностью заменить эксперта в той или иной предметной области. Подобные интеллектуальные системы эффективно применяются в таких областях, как логистика, управление воздушными полетами, управление театром военных действий. Основною направленной деятельностью предсказание, прогнозирование в рамках определенного аспекта в предметной области.

Экскурс в историю экспертных систем

История экспертных систем берет свое начало в 1965 году. Брюс Бучанан и Эдвард Фейгенбаум начали работу над созданием информационной системы для определения структуры химических соединений.

Результатом работы была система под названием Dendral. В основе системы формировалась последовательность правил подобных к «IF – THEN». Информационная система не перестала развиваться и получила множество наследников, таких как ONCOIN – информационная система для диагностики раковых заболеваний, MYCIN – информационная система для диагностики легочных инфекционных заболеваний.

Следующим этапом стали 70-е годы. Период не выделялся особыми разработками. Было создано множество разных прототипов системы Dendral. Примером служит система PROSPECTOR, областью деятельности которой являлась геологические ископаемые и их разведка.
В 80-ых годах появляются профессия – инженер по знаниям. Экспертные системы набирают популярность и выходят на новый этап эволюции интеллектуальных систем. Появились новые медицинские системы INTERNIS, CASNE.

С 90-ых годов развитие интеллектуальных систем приобретает новые и новые методы и особенности. Нововведением становится парадигма проектирования эффективных и перспективных систем. Гибкость, четкость решения поставленных задач дало новое название – мультиагентных систем. Агент – фоновый процесс который действует в целях пользователя. Каждый агент имеет свою цель, «разум» и отвечает за свою область деятельности. Все агенты в совокупности образуют некий интеллект. Агенты вступают в конкуренцию, настраивают отношения, кооперируются, все как у людей.

В 21 век, интеллектуальной системой уже не удивишь никого. Множество фирм внедряет экспертные системы в области своей деятельности.

Быстродействующая система OMEGAMON разрабатывается c 2004 года с IBM, цель которой отслеживание состояния корпоративной информационной сети. Служит для моментального принятия решений в критических или неблагоприятных ситуациях.

G2 – экспертная система от фирмы Gensym, направленная на работу с динамическими объектами. Особенность этой системы состоит в том, что в нее внедрили распараллеливание процессов мышления, что делает ее быстрее и эффективней.

Структура экспертной системы

1. База знаний
Знания — это правила, законы, закономерности получены в результате профессиональной деятельности в пределах предметной области.
База знаний — база данных содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. Другими словами, это набор таких закономерностей, которые устанавливают связи между вводимой и выводимой информацией.

2. Данные
Данные — это совокупность фактов и идей представленных в формализованном виде.
Собственно на данных основываются закономерности для предсказания, прогнозирования. Продвинутые интеллектуальные системы способные учиться на основе этих данных, добавляя новые знания в базу знаний.

3. Модель представления данных
Самая интересная часть экспертной системы.
Модель представления знаний (далее по тексту — МПЗ) — это способ задания знаний для хранения, удобного доступа и взаимодействия с ними, который подходит под задачу интеллектуальной системы.

4. Механизм логического вывода данных(Подсистема вывода)
Механизм логического вывода(далее по тексту — МЛВ) данных выполняет анализ и проделывает работу по получению новых знаний исходя из сопоставления исходных данных из базы данных и правил из базы знаний. Механизм логического вывода в структуре интеллектуальной системы занимает наиболее важное место.
Механизм логического вывода данных концептуально можно представить в виде :
А — функция выбора из базы знаний и из базы данных закономерностей и фактов соответственно
B — функция проверки правил, результатом которой определяется множество фактов из базы данных к которым применимы правила
С — функция, которая определяет порядок применения правил, если в результате правила указаны одинаковые факты
D — функция, которая применяет действие.

Какие существуют модели представления знаний?

Распространены четыре основных МПЗ:

  • Продукционная МПЗ
  • Семантическая сеть МПЗ
  • Фреймовая МПЗ
  • Формально логическая МПЗ

Продукционная МПЗ

В основе продукционной модели представления знаний находится конструктивная часть, продукция(правило):
IF , THEN
Продукция состоит из двух частей: условие — антецендент, действие — консеквент. Условия можно сочетать с помощью логических функций AND, OR .
Антецеденты и консеквенты составленных правил формируются из атрибутов и значений. Пример: IF температура реактора подымается THEN добавить стержни в реактор
В базе данных продукционной системы хранятся правила, истинность которых установлена к за ранее при решении определенной задачи. Правило срабатывает, если при сопоставлении фактов, содержащихся в базе данных с антецедентом правила, которое подвергается проверке, имеет место совпадение. Результат работы правила заносится в базу данных.

Пример

Диагноз Температура Давление Кашель
Грипп 39 100-120 Есть
Бронхит 40 110-130 Есть
Аллергия 38 120-130 Нет

Пример продукции:
IF Температура = 39 AND Кашель = Есть AND Давление = 110-130 THEN Бронхит

Продукционная модель представления знаний нашла широкое применение в АСУТП

Среды разработки продукционных систем(CLIPS)

CLIPS (C Language Integrated Production System) — среда разработки продукционной модели разработана NASA в 1984 году. Среда реализована на языке С, именно потому является быстрой и эффективной.
Пример:

Подобное правило будет активировано только тогда, когда в базе данных появится факт симптома с подобными параметрами.

Семантическая сеть МПЗ

В основе продукционной модели лежит ориентированный граф. Вершины графа — понятия, дуги — отношения между понятиями.
Особенностью является наличие трех типов отношений:

  • класс — подкласс
  • свойство — значение
  • пример элемента класса

По количеству типов отношений выделяют однородные и неоднородные семантические сети. Однородные имею один тип отношения между всеми понятиями, следовательно, не однородные имею множество типов отношений.

Все типы отношений:

  • часть — целое
  • класс — подкласс
  • элемент — количество
  • атрибутивный
  • логический
  • лингвистический

Пример


Недостатком МПЗ является сложность в извлечении знаний, особенно при большой сети, нужно обходить граф.

Фреймовая МПЗ

Предложил Марвин Мински в 1970 году. В основе фреймовой модели МПЗ лежит фрейм. Фрейм — это образ, рамка, шаблон, которая описывает объект предметной области, с помощью слотов. Слот — это атрибут объекта. Слот имеет имя, значение, тип хранимых данных, демон. Демон — процедура автоматически выполняющаяся при определенных условиях. Имя фрейма должно быть уникальным в пределах одной фреймовой модели. Имя слота должно быть уникальным в пределах одного фрейма.

Слот может хранить другой фрейм, тогда фреймовая модель вырождается в сеть фреймов.

Пример

Пример вырождающейся в сеть фреймов


На своей практике, мне доводилось встречать системы на основе фреймовой МПЗ. В университете в Финляндии была установлена система для управления электроэнергией во всем здании.

Языки разработки фреймовых моделей (Frame Representation Language)

FRL (Frame Representation Language) — технология создана для проектирования интеллектуальных систем на основе фреймовой модели представления знаний. В основном применяется для проектирования вырождающихся в сеть фреймовой модели.

Запись фрейма на языке FRL будет иметь вид:

Существуют и другие среды: KRL (Knowledge Representation Language), фреймовая оболочка Kappa, PILOT/2.

Формально логическая МПЗ

В основе формально логической МПЗ лежит предикат первого порядка. Подразумевается, что существует конечное, не пустое множество объектов предметной области. На этом множестве с помощью функций интерпретаторов установлены связи между объектами. В свою очередь на основе этих связей строятся все закономерности и правила предметной области. Важное замечание: если представление предметной области не правильное, то есть связи между объектами настроены не верно или не в полной мере, то правильная работоспособность системы будет под угрозой.

Пример

A1 = A2 = A3 = ; IF A1 AND A2 THEN
Банальней примера и не придумаешь.
Важно: Стоит заметить, что формально логическая МПЗ схожа с продукционной. Частично это так, но они имеют огромную разницу. Разница состоит в том, что в продукционной МПЗ не определены никакие связи между хранимыми объектами предметной области.

Важно

Любая экспертная система должна иметь вывод данных и последовательность «мышления» системы. Это нужно для того чтобы увидеть дефекты в проектировании системы. Хорошая интеллектуальная система должна иметь право ввода данных, которое реализуется через интеллектуальный редактор, право редактора на перекрестное «мышление» представлений при проектировании системы и полноту баз знаний(реализуется при проектировки закономерностей предметной области между инженером по знаниям и экспертом).

Заключение

Экспертные системы действительно имеют широкое применение в нашей жизни. Они позволяют экономить время реальных экспертов в определенной предметной области. Модели представления знаний это неотъемлемая часть интеллектуальных систем любого уровня. Поэтому, я считаю, что каждый уважающий себя IT-специалист, должен иметь даже поверхностные знания в этих областях.

Источник

Читайте также:  Метод программирования является способом
Оцените статью
Разные способы