Определенный интеграл. Как вычислить площадь фигуры
Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры. Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.
Для успешного освоения материала, необходимо:
1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Неопределенный интеграл. Примеры решений.
2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений.
В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала Графики и свойства элементарных функций и статьи о геометрических преобразованиях графиков.
Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент мучается от ненавистной вышки с увлечением осваивает курс высшей математики.
Материалы данного практикума изложены просто, подробно и с минимумом теории.
Начнем с криволинейной трапеции.
Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми
,
и графиком непрерывной на отрезке
функции
, которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:
Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ.
То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция
задает на плоскости кривую, располагающуюся выше оси
(желающие могут выполнить чертёж), а сам определенный интеграл
численно равен площади соответствующей криволинейной трапеции.
Вычислить площадь фигуры, ограниченной линиями ,
,
,
.
Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.
При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.
В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось
):
Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений.
После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Вычислить площадь фигуры, ограниченной линиями ,
,
и осью
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Что делать, если криволинейная трапеция расположена под осью ?
Вычислить площадь фигуры, ограниченной линиями ,
и координатными осями.
Решение: Выполним чертеж:
Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:
В данном случае:
Ответ:
Внимание! Не следует путать два типа задач:
1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.
2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.
Найти площадь плоской фигуры, ограниченной линиями ,
.
Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой
. Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:
Значит, нижний предел интегрирования , верхний предел интегрирования
.
Этим способом лучше, по возможности, не пользоваться.
Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций. Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.
Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:
Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».
А теперь рабочая формула: Если на отрезке некоторая непрерывная функция
больше либо равна некоторой непрерывной функции
, то площадь фигуры, ограниченной графиками данных функций и прямыми
,
, можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ.
В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из
необходимо вычесть
Завершение решения может выглядеть так:
Искомая фигура ограничена параболой сверху и прямой
снизу.
На отрезке , по соответствующей формуле:
Ответ:
На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось
задается уравнением
, а график функции
расположен не выше оси
, то
А сейчас пара примеров для самостоятельного решения
Найти площадь фигуры, ограниченной линиями ,
.
Найти площадь фигуры, ограниченной линиями ,
.
В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:
Вычислить площадь фигуры, ограниченной линиями ,
,
,
.
Решение: Сначала выполним чертеж:
…Эх, чертеж хреновенький вышел, но вроде всё разборчиво.
Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!
Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:
1) На отрезке над осью
расположен график прямой
;
2) На отрезке над осью
расположен график гиперболы
.
Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:
Ответ:
Переходим еще к одному содержательному заданию.
Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде ,
и выполним поточечный чертеж:
Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что
. Или корень. А если мы вообще неправильно построили график?
В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.
Найдем точки пересечения прямой и параболы
.
Для этого решаем уравнение:
,
Действительно, .
Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.
На отрезке , по соответствующей формуле:
Ответ:
Ну, и в заключение урока, рассмотрим два задания сложнее.
Вычислить площадь фигуры, ограниченной линиями ,
,
Решение: Изобразим данную фигуру на чертеже.
Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =)
Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций), а также некоторые значения синуса, их можно найти в тригонометрической таблице. В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.
С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:
На отрезке график функции
расположен над осью
, поэтому:
(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на уроке Интегралы от тригонометрических функций. Это типовой прием, отщипываем один синус.
(2) Используем основное тригонометрическое тождество в виде
(3) Проведем замену переменной , тогда:
Новые пределы интегрирования:
У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.
(4) Здесь мы использовали свойство определенного интеграла , расположив пределы интегрирования в «привычном» порядке
Ответ:
Вычислить площадь фигуры, ограниченной линиями ,
,
Это пример для самостоятельного решения. Полное решение и ответ на нижнем этаже.
Вот, пожалуй, и все основные принципиальные приёмы нахождения площадей. Помимо рассмотренных методов интегрирования, иногда приходится применять формулу интегрирования по частям в определенном интеграле, что не представляет собой особых трудностей. Какой-то интересный пример придумать сложно, … хотя… арккотангенса вроде еще нигде не встречалось:
Вычислить площадь фигуры, ограниченной линиями ,
и координатными осями.
Полного решения не будет, надо же вас немного помучить. А правильный ответ скажу: . Весь необходимый материал для выполнения задания на сайте есть! 😉 И даже больше – через долгие три года, наконец-то появились статьи Вычисление площади в полярных координатах и Вычисление площади, если линия задана параметрически.
Решения и ответы:
Пример 2: Решение:
Выполним чертеж:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.
Пример 5: Решение:
Выполним чертеж:
На отрезке , по соответствующей формуле:
Ответ:
Пример 6: Решение:
Выполним чертеж.
На отрезке , по соответствующей формуле:
Ответ:
Пример 10: Решение:
Изобразим данную фигуру на чертеже:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества . Далее в интегралах я использовал метод подведения функций под знак дифференциала (можно было использовать замену в определенном интеграле, но решение получилось бы длиннее). Если возникли трудности с данными интегралами, посетите урок Интегралы от тригонометрических функций.
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Источник