Определение пластового давления
Пластовое давление ‑ это давление флюидов против середины перфорированного интервала в длительно простаивающих скважинах и в скважинах действующих, но остановленных на период стабилизации забойного давления. Оно определяется:
1) путем прямых измерений глубинными манометрами;
2) путем пересчета с помощью формул по величине устьевого статического давления;
3) по глубине статического уровня;
4) по величине дроссельной тепловой аномалии работающих пластов.
Различают начальное и текущее пластовые давления. Начальное пластовое давление определяют до начала интенсивной разработки, когда не нарушены начальные термодинамические условия пласта из скважин, не было существенного отбора флюидов. Текущее пластовое давление определяют на определенную дату разработки залежи.
Забойное давление ‑ это давление флюидов в действующих добывающих и нагнетательных скважинах на глубине середины интервала перфорации. Его определяют:
1) прямым измерением глубинными манометрами на забое всех видов скважин, оборудованных для спуска глубинных приборов через затрубное пространство;
2) измерением глубины динамического уровня;
3) измерением давлений на устье скважин.
В добывающих скважинах рзаб рпл. Основным требованием к определению забойного давления является обеспечение замеров при установившемся режиме работы скважин.
В чисто газовых скважинах пластовое давление рГ не определяют прямыми замерами, а рассчитывают в соответствии с величиной устьевого давления ρу и относительной плотности газа по воздуху δГ по барометрической формуле
,
где Нп ‑ глубина средней точки интервала перфорации; zср ‑ средний коэффициент сверхсжимаемости газа при средних давлении и температуре Тср в стволе скважины.
В газовых скважинах со столбом жидкости на забое пластовое давление определяют по соотношению
,
где ρг ‑ давление газа на глубине статического уровня, рассчитываемое по формуле, МПа; Нст ‑ глубина статического уровня, м; δЖ ‑ средняя плотность жидкости в интервале глубин от Нп до Нст.
Наличие сведений о давлениях в отдельных пластах, разрабатываемых совместно, позволяет устанавливать интервалы повышенного воздействия на них закачиваемых вод и тем самым прогнозировать опережающее обводнение этих интервалов.
Особого подхода требуют исследования малодебитных фонтанирующих скважин (до 40 м 3 /сут). По режиму работы их можно разделить на работающие стационарно и периодически (в пульсирующем режиме). В первом случае исследования проводят обычным способом с дополнительным контролем постоянства режима дистанционным манометром. Периодически фонтанирующие скважины должны исследоваться по специальной методике, базирующейся на предварительном изучении режима их работы. Изучение проводится в три цикла.
Первый цикл (в закрытой скважине) предусматривает определение положения забоя, интервала перфорации, башмака насосно-комнрессорных труб, нефтеводораздела и получение фоновых кривых температуры и давления.
Второй цикл включает регистрацию давления и притока при пуске скважины в работу. Комплексный прибор, имеющий датчики расхода и давления, помещают над объектом и снимают их показания по времени после пуска скважины в работу до прекращения ее работы. После этого скважину закрывают для восстановления забойного давления.
Третий цикл исследований проводится после следующего пуска скважины в работу в период стабильного дебита. Регистрируются диаграммы расходометрии и барометрии, затем ‑ индикации притока и состава жидкости, термометрии. Обработка результатов исследований при стабильном режиме работы скважины проводится в обычном порядке.
Пластовые давления в эксплуатируемой многопластовой залежи в каждом отдельном пласте определяют по результатам комплексных исследований расходометрией и забойным манометром, проведенных на разных установившихся режимах работы скважины. Режим работы скважины изменяют путем смены штуцера, который создает разное давление на забое или депрессию. Одновременно с измерением забойного давления в установившемся режиме работы скважины проводят определение профилей притока или приемистости над всеми пластами и каждым из них в отдельности. По результатам этих исследований строят графики зависимости дебита (расхода) пласта Q от величины забойного давления ρзаб – индикаторные диаграммы (рис. 22).
Рис. 22. Индикаторные диаграммы, полученные при исследовании многопластового объекта:
1-3 – индикаторные диаграммы для трех отдельных пластов, 4 — суммарная индикаторная диаграмма;
суммарное давление ρ4 =16,2 МПа
Начальный участок индикаторной линии на графике Q =f(ρзаб) часто близок к линейному. Экстраполируя индикаторные линии до нулевого дебита (Q = 0), т.е. до пересечения с осью абсцисс, получают величину пластового давления для каждого пласта в отдельности. Если давления в пластах получают различные, то это указывает на перетоки жидкости между ними в начальный период. Перетоки могут быть продолжительными, если в окружающих скважинах отбор ведется из одного пласта, а закачка — в другой пласт.
Из рис. 22 видно, что индикаторные линии, снятые на четырех режимах работы скважины, имеют линейный вид, что свидетельствует об установившихся режимах их работы. Пластовое давление, определенное по суммарной кривой 4 для всех трех пластов, оказалось меньше пластового давления, найденного по диаграмме для нижнего пласта (кривая 3). Следовательно, в закрытой скважине вероятен переток из нижнего пласта в верхние. Для установления перетока расходомер необходимо поместить между пластами и после закрытия скважины снять кривую изменения дебита во времени.
Результаты измерения пластового давления могут использоваться как для построения карт изобар на определенную дату, так и при интерпретации материалов других методов исследования скважин.
1. Какими способами можно измерить пластовое давление?
2. Какими способами измеряется забойное давление?
3. Какие задачи решаются по данным измерения давления?
Источник
Методы определения пластовых и забойных давлений. Карты приведённых давлений
Пластовое давление определяет состояние жидкости, а также тот запас естественной энергии, в результате использования которого пластовые жидкости извлекаются на поверхность. Значения его в различных точках одной и той же залежи неодинаковы. Они меняются также во времени и в процессе разработки.
Под пластовым давлением понимается давление в некоторой точке пласта, не подверженной воздействию воронок депрессии соседних скважин. Однако в связи с тем, что непосредственный замер пластового давления возможен лишь с помощью скважин, можно считать, что под пластовым давлением фактически понимается статическое забойное давление, т. е. давление на забое остановленной скважины, начиная с того момента, когда после ее остановки в пласте (в районе расположения этой скважины) установилось относительное статическое равновесие.
За начальное пластовое давление обычно принимается статическое забойное давление первой скважины, вскрывшей пласт, замеренное до нарушения статического равновесия, т. е. до отбора из пласта сколько-нибудь значительного количества пластовой жидкости. Естественно, что этот один или несколько замеров характеризуют начальное пластовое давление лишь в определенных точках пласта и не могут быть приняты для залежи в целом. Для определения среднего начального пластового давления полученные замеры по первой скважине (или по первым скважинам) должны быть пересчитаны на среднюю точку объема залежи, на середину этажа нефтеносности, или приведены к поверхности начального водо-нефтяного контакта .
Для наблюдения за процессом разработки пласта необходимо систематически замерять пластовые давления в эксплуатируемых скважинах. Эти замеры лучше всего производить глубинными манометрами. Существуют глубинные манометры двух типов: 1) максимальные и 2) регистрирующие с непрерывной записью показаний. Измерение пластовых давлений манометром по стволу скважины дает возможность определить истинную плотность жидкости и газа при данных давлении и температуре с учетом наличия растворенного газа в водо-нефтяной, смеси. Это может оказать помощь при построении карт изобар.
В тех случаях, когда при фонтанном или компрессорном способе эксплуатации невозможно применить глубинный манометр, пластовые (забойные) давления определяют расчетным путем по формулам. Эти формулы позволяют получить величины, приближающиеся к действительным пластовым давлениям.
При глубиннонасосной эксплуатации для определения забойных давлений расчетным путем используют данные о статических уровнях в скважинах. Уровни в скважинах (в затрубном пространстве) замеряют либо специальной желонкой, спускаемой при помощи лебедки Яковлева, либо эхолотом. Знания уровней нефти и воды в скважине дают возможность подсчитать забойное давление.
Для наблюдения за поведением пласта в процессе разработки необходимо изучать характер изменения и распределения пластовых давлений. Для этого строят карты изобар, т. е. карты равных пластовых давлений. Данными для этого служат замеры давлений в скважинах после их поочередной остановки при работе всех других скважин.
При замерах давления с целью построения карт изобар в каждой скважине должно быть свое время выдержки на забое глубинного манометра, обусловленное системой взаимодействия пласт — скважина и физическими свойствами пород и флюидов.
При всем многообразии условий работы пласта и скважин практически не представляется возможным найти универсальные зависимости для определения времени выдержки глубинного манометра при замере пластового давления в скважинах. Поэтому можно принять такое время выдержки глубинного манометра для каждой скважины, в течение которого забойное давление в ней восстановится до среднего значения давления в пределах некоторой прилегающей к скважине области, или же определять непосредственно величину этого среднего давления в пределах участка, примыкающего к скважине при работе всех скважин пласта.
При наличии данных о давлениях по скважинам построение карт изобар не вызывает затруднений и методически аналогично построению структурных карт с той лишь разницей, что для них используют не приведенные глубины залегания пласта, а величины статических пластовых давлений по скважинам. При построении карт изобар необходимо учитывать:
1) наличие, как правило, исходных данных о давлениях на раз личные даты и необходимость приведения их на дату построения карты изобар;
|
2) зависимость давлений от глубины залегания пласта (давление связано с углом падения пород) и необходимость приведения их
к избранной условной поверхности; 3) отсутствие в пласте статического равновесия и необходимость применения в связи с этим соответствующих приемов интерполяции и особенно экстраполяции давлений. Рассмотрим особенности построения карт изобар более детально.
Рис. Схема графического приведения давлений на дату составления карты изобар. 7 — давления по скважинам; 2 — зредняя (хронологическая) кривая падения давления; 3 — точки давлений по рачетным скважинам; 4 — искомые давления. |
Приведение пластовых давлений по скважинам на дату построения карты изобар проще всего осуществлять графическим методом, который обеспечивает достаточную для практических целей точность. Сущность метода заключается в следующем. Все замеры пластовых давлений на различные даты наносят в виде точек на график (рис. ). По полученным точкам (диаграмме «мушиных» точек) строят среднюю (хронологическую) кривую падения
давления. Затем, полагая, что указанный средний темп падения давления характеризует всю залежь, и следуя этому темпу, приближенно определяют давление на искомую дату в любой скважине. Например, требуется определить давления в скв. 1 и 2 на дату составления карты изобар (на январь, соответствующего года). В этом случае, следуя параллельно средней кривой падения давления, находят искомые давления.
Совершенно очевидно, что предлагаемый метод является приближенным. В связи с этим давления следует приводить к искомой дате лишь по близким скважинам, не используя для расчетов данные скважин, полученные задолго (например, за шесть месяцев) до даты, на которую приводятся давления для построения карты изобар. При неравномерных замерах пластовых давлений по скважинам и сосредоточении фактических данных по отдельным локальным участкам пласта более точные результаты при приведении давлений к одной дате достигаются использованием индивидуальных кривых изменения пластовых давлений по скважинам. Метод приведения давлений на искомую дату по индивидуальным кривым отдельных скважин аналогичен изложенному выше методу. Использование средней кривой падения давлений по пласту для приведения давлений по скважинам на определенную дату в случае неравномерных изменений давлений по отдельным скважинам может привести к неточным результатам, так как неравномерный отбор жидкости из скважин и литоло-го-физические особенности коллектора (особенно его проницаемость) создают различный темп падения давления по отдельным скважинам.
Давления необходимо приводить к уровню моря во всех случаях, когда изменения давлений вследствие падения пород превышают принятую точность (0,5 кПсм 2 карты изобар.
Давления, приведенные к уровню моря, в дальнейшем будем называть приведенными изобарами.
Источник
Пластовое давление
Обычно прогноз пластового давления основан на предположении о том, что оно изменяется строго пропорционально глубине скважины, причем коэффициент пропорциональности называют часто коэффициентом (индексом) аномальности ka:
где rв – плотность воды, кг/м 3 ,
lпл– глубина расположения пласта (в наклонно направленных скважинах вместо глубины по стволу берут вертикальную проекцию ствола на данной глубине.), м.
Тогда получается, что для определения пластового давления вполне достаточно знать только величину ka для различных интервалов бурения. Обычно принимают, что для некоторого интервала бурения ka – величина постоянная. Однако то обстоятельство, что для всех интервалов бурения расчет пластового давления ведут с помощью формулы (1.1), представляющей собой уравнение прямой, исходящей их начала координат, означает, во-первых, что линии пластовых давлений являются отрезками прямых, а во-вторых, продолжения этих отрезков образуют лучи, исходящие из устья скважины.
На рис. 1 показаны четыре луча, соответствующие разным значениям индекса пластового давления ka . У луча 0а оно минимально, а у луча 0g – максимально. На глубине Lа изменяется индекс аномальности ka , и линия скачком переходит на другой луч и так далее. В результате образуется ломаная линия 0abcdefghi, включающая горизонтальные участки ab, cd, ef, hg. Известны случаи локального роста пластового давления на некотором интервале бурения (по сравнению с соседними пластами) с последующим возвратом на прежний (или близкий к прежнему) уровень давлений. На рис. 1. этому соответствует участок efghi.
Такой упрощенный, хотя и популярный в практике проектирования скважин, метод прогнозировании пластового давления привносит в расчеты значительные ошибки, особенно в верхних интервалах разреза и при расчетах давления для пластов с аномально высоким пластовым давлением (АВПД). Но прежде чем перейти к обсуждению более точных методов прогнозирования пластовых давлений дадим определение понятия градиент пластового давления qпли сравним его с коэффициентом аномальности ka .
Величина qпл, в строгом смысле, характеризует изменение пластового давления в пределах некоторого интервала бурения или пласта, приходящееся на единицу длины (как правило, это 1 м) и вычисляется по формуле:
где pпл2 и pпл1 – пластовые давления соответственно на глубинах L2и L1 (например, в подошве и кровле пласта).
Если обнаружится, что для любых двух глубин в пределах данного интервала бурения (пласта) величина qпл постоянна (одна и та же), то это будет означать, что пластовое давление изменяется по линейному закону.
Но это совсем не означает, что продолжение прямой пройдет точно через устье скважины, как это имеет место на рис. 1. И здесь возможны варианты (рис. 2):
1. Участок 0′ a отражает изменение рпл в верхней части разреза, насыщенной пресными или маломинерализованными водами со статическим уровнем пластовой воды в скважине, как правило, ниже уровня земли («сухой» отрезок 0-0′). Предположим теперь, что каким-то образом удалось замерить пластовые давления в точках a’ и a. Вычисляя теперь по формуле (1.1) коэффициенты аномальности ka (при известных давлениях и глубинах), мы бы получили разные величины ka для указанных глубин (прямые 0а и 0а’ не совпадают). Но выше мы только что доказали, что наличие линейной связи между давлением и глубиной автоматически означает постоянство градиента давления. В этих условиях применение формулы (1.1) с коэффициентом ka, найденным по глубине La, приведет к завышению рпл для всех глубин, меньших La.
2. Если продолжение прямой линии пластового давления (прямая 0 с на рис. 2) проходит через устье скважины, то имеет место частный случай постоянства ka и qпл на всем интервале бурения. При этом расчеты по формуле (1.1) будут тоже точными.
3. Продолжение прямой пластовых давлений может пройти и выше устья (прямая 0″ е на рис. 2). Это может быть, например, в случае, когда высота области питания для данного водоносного горизонта находится намного выше того места, где бурится скважина (геологических причин формирования АВПД множество. Указанная причина — одна из возможных.). Расчет по формуле (1.1) будет отягощен ошибками, как и в случае 1, так как коэффициент аномальности, в отличие от градиента давления, будет переменным по длине интервала бурения.
4. Продуктивная толща газовых месторождений и некоторых, например, Прикаспийских, имеют большую протяженность (несколько сотен метров), и отдельные проницаемые участки (коллектора) имеют между собой гидродинамическую связь в вертикальном направлении. Такие залежи месторождений называют массивными. Пластовое давление в пределах продуктивных пластов распределяется не пропорционально глубине, а в соответствии с плотностью флюида в пластовых условиях. В продуктивной части газового месторождения – в зависимости от плотности сжатого газа, в нефтяных – от плотности нефти в пластовых условиях. На рис. 2 прямая fg иллюстрирует распределение давления в газовой залежи. Считается, что в подошве залежи давление близко к давлению в водоносных пластах на соответствующей глубине, зато в кровле оно существенно больше «нормального» и воспринимается как АВПД. Для таких случаев прогнозный расчет по формуле (1.1) в принципе возможен только для подошвы залежи. Что касается давления в кровле, то оно определяется по формулам (соответственно для газа и нефти):
где pпд и pкр – пластовое давление в подошве и в кровле пласта;
bг — относительная сжимаемость природного газа;
rн— плотность нефти в пластовых условиях;
Lпд и Lкр — глубины расположения подошвы и кровли пласта соответственно.
Для многопластовых месторождений нефти, когда каждый нефтеносный пласт может рассматриваться как самостоятельная залежь малой мощности (единицы метров) с собственным водонефтяным контактом, в пределах нефтеносной части распределение тоже будет по закону, описанному формулой (1.4). Однако, в связи с малой мощностью пластов, описанным эффектом аномальности в кровле пренебрегают, и пластовые давления определяют либо по формуле (1.1), либо через градиент давления qпл, если известно давление для одной из глубин в пределах рассматриваемого интервала бурения.
На линии пластовых давлений выделяются горизонтальные площадки, что свидетельствует о скачкообразном изменении пластового давления при достижении определенных глубин. Если подходить формально, то получается, что в одной точке пласта существуют два давления, что абсурдно. Все дело в том, что в реалии переход от одного давления к другому происходит не сразу, а на некотором, относительно коротком (в несколько метров) интервале. Вследствие малости интервала переход на новое давление показывают в виде ступенек.
Существует еще один способ оценки пластового давления и его изменения, суть которого сводится к определению эквивалентной плотности жидкости, которая, находясь (условно) в скважине от рассматриваемой точки пласта на глубине Li до устья, создает гидростатическое давление, численно равное пластовому на данной глубине:
Понятие «эквивалентная плотность» применяется не только к пластовому давлению, но используется и для описания всех других давлений, представленных в ТПД: гидростатического, давления гидроразрыва и горного. Вычисляются они по формуле (1.5) с заменой числителя на значения соответствующих давлений.
А теперь сравним размерности и величины параметров ka , qпл , rэкв , которые служат исключительно для оценки уровня давлений и их изменения с глубиной скважины.
Из формулы (1.1) следует, что коэффициент ka — величина безразмерная. Он призван показать, во сколько раз пластовое давление превышает давление столба воды на той же глубине в предположении, что скважина полностью ею заполнена (условно, конечно). Нередко величина ka превышает 1,8, что требует применения утяжеленных растворов соответствующей плотности.
Предположим, что в кровле пласта на глубине 2000 м пластовое давление оказалось равным 21,6 МПа, а в подошве, на глубине 2500 м – 27 МПа.
— коэффициент аномальности ka = 21,6*10 6 / (1000*9,81*2000)=1,1 (на глубине 2000 м),
— коэффициент аномальности ka = 27*10 6 / (1000*9,81*2500)=1,1 (на глубине 2500 м),
— градиент пластового давления в интервале 2000-2500 м:
qпл = (27-21,6)/ (2500-2000) = 0,0108 МПа/м,
— эквивалентная плотность по пластовому давлению на глубине 2500 м:
rэкв = 27*10 6 / (9,81*2500) = 1100 кг/м 3 .
По величинам ka иrэкв можно заключить, что пластовые давления в указанном интервале на 10 % превышают давление воды с плотностью 1000 кг/м 3 .
Приближенный, но весьма распространенный метод прогнозирования пластового давления, предполагает использование формулы (1.1).
Более строгий метод расчета пластового давления предусматривает точное знание давления на одной из глубин в пределах пласта (интервала бурения), например, прямым измерением глубинными манометрами, и расчет давления для других глубин с использованием величины градиента давления(По определению пластовое давление – фактор природный, и его величина в принципе не может зависеть от человека. Однако бывает пластовое давление «рукотворным». Например, в результате добычи нефти имеет место уменьшение давления в продуктивных пластах. При закачке в пласт жидкости или газа для восстановления пластовой энергии оно, наоборот, увеличивается и может превысить первоначальное давление. ).
Изменение пластового давления в зависимости от глубины можно отобразить с помощью графика «глубина — эквивалентная плотность».
Источник