Первая литература по способам счета

Содержание
  1. Системы устного счета и их создатели
  2. Яков Исидорович Перельман и его тридцать простых приемов устного счета
  3. Яков Трахтенберг и его система быстрого счета
  4. Сергей Александрович Рачинский и его 1001 задача для умственных вычислений
  5. Первая литература по способам счета
  6. Проект на тему «Приемы быстрого счета»
  7. Скачать:
  8. Предварительный просмотр:
  9. Введение
  10. Глава 1. Как люди научились считать.
  11. 1.1. Изменение счёта при появлении цивилизации
  12. 1.2. Первая литература по способам счёта.
  13. 1.3. Таблица умножения на «пальцах».
  14. Глава 2. Способы быстрого счета
  15. 2.1 Умножение на 11 числа, сумма цифр которого не превышает 10.
  16. 2.2 Умножение на 11 числа, сумма цифр которого больше 10.
  17. 2.3 Умножение на одиннадцать (по Трахтенбергу).
  18. 2.4 Умножение на двенадцать (по Трахтенбергу).
  19. 2.5 Умножение на число 111, 1111 и т. д., зная правила умножения двузначного числа на число 11.
  20. 2.6. Умножение двузначного числа на 101.
  21. 2.7. Умножение трёхзначного числа на 999.
  22. 2.8 Умножение по одиннадцать, число нужно умножить на 10 и прибавить то число, которое мы умножаем.
  23. 2.9. Умножение на двенадцать (по Берману).
  24. 3. Исследование

Системы устного счета и их создатели

Уметь считать правильно и быстро – замечательная способность человеческого ума. Но далеко не все умеют ею пользоваться. Вместе с тем, счет в уме дает огромные преимущества. Нет, это не гонорар от выступлений на эстраде. Это уверенность во многих житейских ситуациях, не только связанных непосредственно с вычислениями, что само по себе очень полезно, но и психологическая уверенность.

Быстрый счет часто означает не интеллектуальную способность мозга, а умение применять на практике методики счета в уме, разработанные и описанные учеными — математиками. Для их освоения вовсе необязательно иметь выдающиеся математические способности, достаточно изучить эти методики по их книгам и активно применить в жизни.

В статье мы выделим гениальные книги – системы устного счета и их выдающихся создателей.

Яков Исидорович Перельман и его тридцать простых приемов устного счета

Надо отметить, что Яков Перельман (1882-1942) был выдающейся личностью. Наше поколение благодарно ему за то, что именно Перельман стал родоначальником жанра научно — занимательной литературы. Это сегодня принято обо всем рассказывать популярно, весело и доходчиво. А во времена Перельмана научная литература сильно отличалась от популярной.

Перельман написал более ста книг, которые и сегодня любимы взрослыми и детьми. Эти книги содержат по-настоящему ценные знания в разных областях, они способствуют развитию творческого подхода к точным наукам и раскрывают прекрасный мир математики, физики, астрономии. Это великолепные книги «Занимательная астрономия», «Занимательная алгебра», «Занимательная геометрия», «Занимательная физика» и другие.

Книги переведены на двадцать четыре языка. На обратной стороне Луны в честь этого удивительного человека назван кратер.

Книга Я. Перельмана «Быстрый счет. Тридцать простых приемов устного счета» содержит полезные и эффективные способы быстрого счета в уме. Они рассчитаны на способности обычного человека. Но если вы успешно освоите эти методы, вряд ли вас будут продолжать считать обычным человеком.

Яков Трахтенберг и его система быстрого счета

Хотите с удивительной скоростью не только складывать и умножать числа, но и извлекать корни и возводить в квадрат? Тогда вам нужно освоить систему замечательного цюрихского профессора, уроженца Одессы Якова Трахтенберга (1888-1953).

Яков Трахтенберг окончил Петербургский горный институт. С 1919 года Яков проживал в Германии, позже переехал в Австрию.

В послевоенные годы Трахтенберг создал в Цюрихе математический институт и возглавил его.

Кроме математической деятельности Яков Трахтенберг известен как автор уникального авторского метода изучения иностранных языков.

Система Я. Трахтенберга направлена на тренировку скорости вычислений. Если вы сможете уделить системе значительное количество времени для выполнения упражнений, то скорость счета возрастет во много раз! Это удивительный метод, в корне отличающийся от стандартного изучения устного счета в школе.

Методика счета в уме Якова Трахтенберга описана в книге Энн Катлер и Рудольфа Мак-Шейна «Система быстрого счета по Трахтенбергу».

Сергей Александрович Рачинский и его 1001 задача для умственных вычислений

Профессор ботаники МГУ С.А. Рачинский (1833-1902) предпочел должность сельского учителя в Смоленской губернии. За время своей педагогической деятельности, Рачинский накопил огромный опыт, нашедший отражение в труде «1001 задача для умственных вычислений». Это задачник по математическим вычислениям, впервые увидевший свет в Санкт- Петербурге в 1891 году.

Учеником Сергея Рачинского был художник Н.П. Богданов-Бельский, увековечивший память об учителе известным полотном «Устный счет», находящимся сегодня в Третьяковской галерее. О картине подробнее вы можете прочитать здесь.

Прочитать о жизни С. А. Рачинского, о его системе счета подробнее можно в книге «Сельский учитель С.А. Рачинский и его задачи для умственных вычислений» И.И. Баврина.

Отложите калькулятор. Возможно, пришло время считать по-настоящему, используя свой ум, то есть по-человечески!

Владеете ли вы навыками устного счета? Какие книги по устному счету вам знакомы? Были ли ситуации, когда умение считать в уме вам очень помогло? Или неумение считать вас подводило? Поделитесь с нами!

Автор: Светлана Каминская (пользователь Камлана)

Источник

Первая литература по способам счета

Сергей Ткач запись закреплена

КНИГИ ПО МЕТОДИКЕ УСТНЫХ ВЫЧИСЛЕНИЙ

Устный счет – гимнастика для ума. Счет в уме является самым древним способом вычисления. Освоение вычислительных навыков развивает память и помогает усваивать предметы естественно-математического цикла.

Существует много приемов упрощения арифметических действий. Знание упрощенных приемов вычисления особенно важно в тех случаях, когда вычисляющий не имеет в своем распоряжении таблиц и калькулятора.

Мотивацией для выбора темы послужило желание продолжения формирования вычислительных навыков, умения быстро и чётко находить результат математических действий.

Правила и приёмы вычислений не зависят от того, выполняются они письменно или устно. Однако владение навыками устных вычислений представляет большую ценность не потому, что в быту ими пользуются чаще, чем письменными выкладками. Это важно ещё и потому, что они ускоряют письменные вычисления, приобретают опыт рациональных вычислений, дают выигрыш в вычислительной работе.

Читайте также:  Способы проведения выборочного наблюдения

Если интересно подписаться.

Источник

Проект на тему «Приемы быстрого счета»

Проект по математике на тему «Приемы быстрого счета»

Скачать:

Вложение Размер
Проект 494.06 КБ

Предварительный просмотр:

Проект по математике

на тему: «Приемы быстрого счета»

Выполнил ученик 6 «А» класса:

Северов Артемий Николаевич

Руководитель: учитель математики Бабина Марина Сергеевна

г. Семенов, 2018 г

Введение

Мне всегда было интересно, какими методами пользуются учителя математики при проверке тетрадей, при объяснении нового материала, когда приходится произвести быстрый расчёт. Определённые приёмы быстрого счёта, предложенные на уроках, мне давались легко, но чем дальше мы познаём математику, тем больше мне хочется узнать о том, как можно еще использовать быстрый счёт на более сложных числах.

В наш век высоких технологий и повсеместного использования компьютера умение быстро и правильно производить в уме достаточно сложные вычисления ни в коем случае не утратило своей актуальности. Гибкость ума является предметом гордости людей, а способность, например, быстро производить в уме вычисления вызывает откровенное удивление. Такие навыки помогут человеку в учёбе, в быту, в профессиональной деятельности. Кроме того, быстрый счёт – настоящая гимнастика для ума, приучающая в самых сложных жизненных ситуациях находить в кратчайшее время хорошие и нестандартные решения. Производя математические вычисления в уме, человек пользуется, по сути, теми же правилами, что и при письменных вычислениях. И оказалось, что большие познания можно получить обратившись к литературе, часть из которой мне предложила руководитель моего проекта Габдрашитова С.А., подсказав суть некоторых способов счёта. Проанализировав очень многие статьи, я открыл для себя очень интересные исторические данные о необычных способах быстрого счёта, а также много закономерностей и неожиданных результатов. И казалось бы «сухие» цифры всего лишь примеры, но сколько полезного и красивого в этих преобразованиях. Для меня было необычно, что приложив немного усилий, я теперь смогу и сам вести быстрый счёт и поделиться этими познаниями с одноклассниками на кружке, со взрослыми и со знакомыми. И, как правило, они, заинтересованные этим, начинают использовать такие приёмы и способы. А ведь большинство моих сверстников считают плохо. То ли думать им лень (зачем загружать себя лишней работой, если есть калькуляторы), то ли в своё время этому никто не научил. Приёмов рациональных вычислений в учебниках практически нет. Сложные формулы и алгоритмы школьной программы всё дальше и дальше уводят учеников от простых, понятных навыков устного счёта.

Я выбрал тему «Приёмы быстрого счёта» потому, что я люблю математику и хотел бы научиться считать быстро и правильно, не прибегая к использованию калькулятора.

Актуальность моей темы заключается в следующем: то, что быстрый счёт помогает людям в повседневной жизни, а ученикам на «отлично» заниматься по математике.

Цели работы: изучить методы и приёмы быстрого счёта и доказать необходимость умения быстрого счёта и эффективного использования этих приёмов.

  • изучить историю возникновения вычислений;
  • рассмотреть правила вычислений, которыми пользовались в древности и которыми пользуются сейчас;
  • освоить правила быстрого счета и научить пользоваться ими учащихся нашей школы.

Глава 1. Как люди научились считать.

На этом этапе мне предстоит окунуться в историю появления счёта, чтобы понять преимущества людей, обладающих приёмами быстрого счета.

Никто не знает, как впервые появилось число, как первобытный человек начал считать. Однако десятки тысяч лет назад первобытный человек собирал плоды деревьев, ходил на охоту, ловил рыбу, научился делать каменный топор и нож, и ему приходилось считать различные предметы, с которыми он встречался в повседневной жизни. Постепенно возникала необходимость отвечать на жизненно важные вопросы: по сколько плодов достанется каждому, чтобы хватило всем, сколько расходовать сегодня, чтобы оставить про запас, сколько нужно сделать ножей и т.п. Таким образом, сам не замечая, человек начал считать и вычислять.

Вначале человек научился выделять единичные предметы. Например, из стаи волков, стада оленей он выделял одного вожака, из выводка птенцов – одного птенца и т.д. Научившись выделять один предмет из множества других, говорили «один», а если их было больше – «много». Даже для названия числа «один» часто пользовались словом, которым обозначался единичный предмет, например «луна», «солнце». Такое совпадение названия предмета и числа сохранилось в языке некоторых народов до наших дней.

Частые наблюдения множеств, состоящих из пары предметов (глаза, уши, крылья, руки) привели человека к представлению о числе два. До сих пор слово «два» на некоторых языках звучит так же, как «глаза» или «крылья».

Если предметов было больше двух, то первобытный человек говорил «много». Лишь постепенно человек научился считать до трёх, затем до пяти и до десяти и т.д. Название каждого числа отдельным словом было великим шагом вперёд.

Для счёта люди использовали пальцы рук, ног. Ведь и маленькие дети тоже учатся считать по пальцам. Однако этот способ годился только в пределах двадцати.

Выход нашелся: считать на пальцах до 10, а затем начинать сначала, отдельно подсчитывая количество десятков. Система счисления на основе десяти возникла как естественное развитие пальцевого счёта.

1.1. Изменение счёта при появлении цивилизации

По мере развития речи люди начали использовать слова для обозначения чисел. Отпала необходимость показывать кому-то пальцы, камешки или реальные предметы, чтобы назвать их количество. Для изображения чисел стали применяться рисунки, чертежи или символы. Существовали и системы с отдельными символами для каждой цифры до 9 включительно, как в арабской системе счисления, которую мы сейчас используем, а у греков имелся специальный символ и для 10.

При помощи пальцев рук люди научились не только считать большие числа, но и выполнять действия сложения и вычитания.

Древние торговцы для удобства счёта начали накладывать зерна и раковины на специальную дощечку, которая со временем стала называться абаком.

Особенно сложны и трудны были в старину действия умножения и деления, особенно последнее. «Умноженье – мое мученье, а с деленьем – беда» – говорили в старину. Тогда не существовало еще, как теперь, одного выработанного практикой приёма для каждого действия. Напротив, в ходу была одновременно чуть ли не дюжина различных способов умножения и деления – приёмы один другого запутаннее, твёрдо запомнить которые не в силах был человек средних способностей. Каждый учитель счётного дела держался своего излюбленного приёма, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

1.2. Первая литература по способам счёта.

В книге В. Беллюстина « Как постепенно дошли люди до настоящей арифметики» (1914) изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще (способы), скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом рукописных сборниках».Наш современный способ умножения описан там под названием «шахматного». Был так же и очень интересный, точный, лёгкий, но громоздкий способ «галерой» или «лодкой», названный так в силу того, что при делении чисел этим способом получается фигура, похожая на лодку или галеру. У нас такой способ употреблялся до середины XVIII века. («Арифметика» – старинный русский учебник математики, которую Ломоносов назвал «вратами своей учености») пользуется исключительно способом «галеры», не употребляя, впрочем, этого названия.

Упоминаются такие способы, как «загибанием», «решеткой», «задом наперед», «ромбом», «треугольником» и многие другие. Многие такие приемы для умножения чисел долгие и требуют обязательной проверки.

Интересно, что и наш способ умножения не является совершенным, можно придумать еще более быстрые и еще более надежные.

1.3. Таблица умножения на «пальцах».

Таблица умножения – те необходимые в жизни каждого человека знания, которые требуется элементарно заучить, что на первых школьных порах даётся совсем не элементарно. Это потом уже с легкостью мага мы «щелкаем» примеры на умножение: 2·3, 3·5, 4·6 и т.д., но со временем все чаще забываемся на множителях ближе к 9, особенно если счетной практики давно не ведали, отчего отдаемся во власть калькулятора или надеемся на свежесть знаний друга. Однако, овладев одной незамысловатой техникой «ручного» умножения, мы можем запросто отказаться от услуг калькулятора. Уточнение: речь идет о школьной таблице умножения, т.е. для чисел от 2 до 9, умножаемых на числа от 1 до 10.

Умножение для числа 9 – 9·1, 9·2 … 9·10 – легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится» на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке). Допустим, хотим умножить 9 на 7. Загибаем палец с номером, равным числу, на которое мы будем умножать 9. В нашем примере нужно загнуть палец с номером 7. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа – количество единиц. Слева у нас 6 пальцев не загнуто, справа – 3 пальца. Таким образом, 9·7=63. Ниже на рисунке детально показан весь принцип «вычисления».

Еще пример: нужно вычислить 9·9=? По ходу дела скажем, что в качестве «счетной машинки» не обязательно могут выступать пальцы рук. Возьмите к примеру 10 клеточек в тетради. Зачеркиваем 9-ю клеточку. Слева осталось 8 клеточек, справа – 1 клеточка. Значит 9·9=81. Все очень просто.

Умножение для числа 8 – 8·1, 8·2 … 8·10 – действия здесь похожи на умножение для числа 9 за некоторыми изменениями. Во-первых, поскольку числу 8 не хватает уже двойки до круглого числа 10, нам необходимо каждый раз загибать сразу два пальца – с номером х и следующий палец с номером х+1. Во-вторых, тотчас же после загнутых пальцев мы должны загнуть еще столько пальцев, сколько осталось не загнутых пальцев слева. В-третьих, это напрямую работает при умножении на число от 1 до 5, а при умножении на число от 6 до 10 нужно отнять от числа х пятерку и выполнить расчёт как для числа от 1 до 5., а к ответу затем добавить число 40, потому что иначе придется выполнять переход через десяток, что не совсем удобно «на пальцах», хотя в принципе это не так сложно. Вообще надо заметить, что умножение для чисел ниже 9 тем неудобнее выполнять «на пальцах», чем ниже число расположено от 9.

Теперь рассмотрим пример умножения для числа 8. Допустим, хотим умножить 8 на 3. Загибаем палец с номером 3 и за ним палец с номером 4 (3+1). Слева у нас осталось 2 незагнутых пальца, значит нам необходимо загнуть еще 2 пальца после пальца с номером 4 (это будут пальцы с номерами 5, 6 и 7). Осталось 2 пальца не загнуто слева и 4 пальца – справа. Следовательно, 8·3=24.

Еще пример: вычислить 8·8=? Как было сказано выше, при умножении на число от 6 до 10 нужно отнять от числа х пятерку, выполнить расчет с новым число х-5, а затем добавить к ответу число 40. У нас х=8, значит загибаем палец с номером 3 (8-5=3) и следующий палец с номером 4 (3+1). Слева два пальца остались не загнуты, значит загибаем еще два пальца (с номером 5,6). Получаем: слева 2 пальца не загнуты и справа – 4 пальца, что обозначает число 24. Но к этому числу нужно еще добавить 40: 24+40=64. В итоге 8·8=64.

Глава 2. Способы быстрого счета

2.1 Умножение на 11 числа, сумма цифр которого не превышает 10.

Чтобы умножить на 11 число, сумма цифр которого 10 или меньше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.

2.2 Умножение на 11 числа, сумма цифр которого больше 10.

Чтобы умножить на 11 число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить 1, а вторую и последнюю (третью) цифру оставить без изменения.

2.3 Умножение на одиннадцать (по Трахтенбергу).

Разберем на примере: 633 умножить на 11.

Ответ пишется под 633 по одной цифре справа налево, как указано в правилах.

Первое правило. Напишите последнюю цифру числа 633 в качестве правой цифры результата

Второе правило. Каждая последующая цифра числа 633 складывается со своим правым соседом и записывается в результат.3+3 будет 6. Перед тройкой записываем результат 6.

Применим правило еще раз: 6+3 будет 9. Записываем и эту цифру в результате:

Третье правило. Первая цифра числа 633, то есть 6, становится левой цифрой результата:

2.4 Умножение на двенадцать (по Трахтенбергу).

Правило умножения на 12: нужно удваивать поочередно каждую цифру и прибавлять к ней поочередно ее «соседа».

Необходимо записывать цифры множимого через интервал и каждую цифру результата писать точно под цифрой числа 63247, из которой она образовалась.

063247*12 дважды 7 будет = 14, переносим 1

063247*12 дважды 4+7+1=16, переносим 1

063247*12 дважды 2+4+1 = 9

Следующие шаги аналогичны.

Окончательный ответ: 063247*12

2.5 Умножение на число 111, 1111 и т. д., зная правила умножения двузначного числа на число 11.

Если сумма цифр первого множителя меньше 10, надо мысленно раздвинуть цифры этого числа на 2, 3 и т.д. шага, сложить цифры и записать соответствующее количество раз их сумму между раздвинутыми цифрами. Количество шагов всегда меньше количества единиц на 1.

24х111=2(2+4) (2+4)4=2664 (количество шагов — 2)

24х1111=2(2+4)(2+4)(2+4)4=26664 (количество шагов — 3)

При умножении числа 72 на 111111 цифры 7 и 2 надо раздвинуть на 5 шагов. Эти вычисления можно легко произвести в уме.

72 х 111111 = 7999992 (количество шагов – 5)

Если единиц во втором множителе 7, то шагов будет на один меньше, т.е. 6.

Если единиц 8, то шагов будет 7 и т.д.

61 х 11111111 = 677777771

Эти вычисления можно легко произвести в уме.

Умножение двузначного числа на 111, 1111, 1111 и т.д., сумма цифр которого равна или больше 10.

Немного сложнее выполнить устное умножение, если сумма цифр первого множителя равна 10 или более 10.

48 х 111 = 4 (4+8) (4+8) 8= 4 (12) (12) 8 = (4+1) (2+1) 28 = 5328.

В этом случае к первой цифре нужно прибавить 1. получим 5.

Далее 2 + 1 = 3. А последние цифры 2 и 8 оставляем без изменения.

56 х 11111 = 5 (5+6) (5+6) (5+6) (5+6) 6 = 5 (11) (11) (11) (11) 6 = 622216

67 х 1111 = 6 (6+7)…7 = 6 (13)…7 = 74437

2.6. Умножение двузначного числа на 101.

Пожалуй, самое простое правило: припишите ваше число к самому себе. Умножение закончено. Пример:

57 * 101 = 5757 57 → 5757 94 * 101 = 9494

быстрый счёт умножение число 59 * 101 = 5959

2.7. Умножение трёхзначного числа на 999.

Любопытная особенность числа 999 проявляется при умножении на него всякого другого трёхзначного числа. Тогда получается шестизначное произведение: первые три цифры есть умножаемое число, только на уменьшенное на единицу, а остальные три цифры (кроме последней) – «дополнения» первых до 9. Например:

385 * 999 = 384615

573 * 999 = 572427 943 * 999 = 942057

2.8 Умножение по одиннадцать, число нужно умножить на 10 и прибавить то число, которое мы умножаем.

Пример: 110 * 11 = 110 * (10+1) = 110 * 10 + 110 * 1= 1100 + 110= 1210

Пример: 123 * 11 = 123 * (10+1) = 123 * 10 + 123 * 1= 1230 + 123= 1353

2.9. Умножение на двенадцать (по Берману).

При умножении на 12 можно число умножить сначала на 6, а затем на 2. Шесть в свою очередь, можно разбить на 2 множителя – это 3 и 2.

Пример: 136 * 12 = 136* 6 * 2 = 816 * 2 = 1632 или

136 * 12 = 136 * 3 * 2 * 2 = 408 * 2 * 2 = 816 * 2 = 1632

3. Исследование

Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения, сложения, вычитания столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен тестовый опрос. Всего опрошено 45 учащихся 5- 6 классов.

Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку?

Умеете ли вы умножать, складывать, вычитать числа столбиком, делить «уголком»?

Знаете ли вы другие способы выполнения арифметических действий?

А хотели бы узнать?

По результатам опроса можно сделать вывод, что

78% учащихся считают, что современному человеку нужно уметь выполнять арифметические действия;

87% учащихся считают, что умеют умножать, складывать, вычитать числа столбиком, делить «уголком»;

84% опрошенных школьников не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы;

89% учащихся хотели бы научиться приемам быстрого счета без калькулятора и вычислений столбиком.

Также был проведен математический диктант в моем классе. В диктанте приняло участие 15 человек. В начале я подобрал 7 примеров на 5 правил. Было дано задание посчитать эти примеры на время. После этого на факультативе я выступил со своим проектом и повторил тестирование на аналогичных примерах. Время выполнения значительно сократилось. Результаты представлены в таблице:

Источник

Читайте также:  Способы обретения права собственности закрепленные
Оцените статью
Разные способы