- Новые технологии обработки металла
- Литейное производство
- Формирование технологических характеристик сплава
- Термическая обработка
- Упрочнение давлением
- Химическая обработка
- Защита от коррозии
- Технология биметаллов
- Механическая обработка
- Обработка давлением
- Сваривание
- Лазерная сварка
- Плазменная резка
- Новейшие разработки в производстве сложных и малоразмерных деталей
- Электроэрозионный метод обработки
- Ультразвуковой метод обработки
- Нанотехнологии
- Статья «Современные технологии обработки металлов.» статья по технологии
- Скачать:
- Предварительный просмотр:
- Современные технологии обработки металлов.
- Общая классификация
- Токарно-фрезерная обработка
- Энергосберегающие методы пластического деформирования металлов
- Высокоэнергетические способы формоизменения
Новые технологии обработки металла
Обработка металла берет начало в доисторический период, когда древние люди научились отливать из меди орудья труда и наконечники стрел. Так началась эпоха металла, ископаемого которое и по сей день остается актуальным. Сегодня новые технологии обработки металла позволяют создавать различные сплавы, изменять технологические свойства, получать сложные формы и конструкции.
В наши дни самым востребованным материалом является железо. На его основе отливают множество сплавов с различным содержанием углерода и легирующих добавок. Кроме стали, в промышленности широко применяют цветные металлы, которые также используются в широком разнообразии сплавов. Каждый сплав характеризуется не только эксплуатационными свойствами, но и технологическими, что и определяет способ его обработки:
- литье;
- термическая обработка;
- механическая обработка резанием;
- холодная или горячая деформация;
- сваривание.
Литейное производство
Литье – это самый первый способ, который стал применять человек. Первой была медь, а выплавлять железо из руды в сыродутной печи начали в XII веке до н. э. Современные технологии позволяют получать различные сплавы, рафинировать и раскислять металл. Например, раскисление меди фосфором делает ее более пластичной, а переплавка в инертной среде повышает электропроводимость.
Последними достижениями в металлургии стали появление новых сплавов. Разработаны новые, более качественные марки нержавеющей высоколегированной стали аустенитного и ферритного класса. Появились более долговечные и устойчивые к коррозии жаростойкие, жаропрочные, кислотостойкие и пищевые стали AISI 300-ой и 400-ой серии. Некоторые сплавы были усовершенствованны и в их состав в качестве стабилизатора введен титан.
В цветной металлургии также были получены сплавы с оптимальными характеристиками для той или иной отрасли. Вторичный алюминий общего назначения 1105, алюминий высокой чистоты А0 для пищевой промышленности, авиалиний, среди которого наиболее востребованы в авиационной промышленности марки АВ, АД31 и АД 35, устойчивый к морской воде корабельный алюминий 1561 и АМг5, свариваемые алюминиевые сплавы легированные магнием или марганцем, жаропрочные алюминии, такие как АК4. Широкий спектр сплавов на основе меди – бронза и латунь также отличаются характерными особенностями и удовлетворяют все потребности народного хозяйства.
Формирование технологических характеристик сплава
На современном рынке металлопроката представлены различные полуфабрикатные изделия из различных сплавов стали и цветмета. При этом одна и та же марка может предлагаться в различном технологическом состоянии.
Термическая обработка
Посредством термической обработки сплав может доводиться до максимально жесткого и прочного состояния или наоборот до более пластичного. Твердое состояние «Т» ‒ термически закаленный, достигается нагревом до определенной температуры и последующим резким охлаждением в воде или масле. Мягкое состояние «М» ‒ термически отожженный, когда после нагрева остывание производится медленно. Для алюминия также существуют термические методы естественного и искусственного старения.
Для каждой марки определены свои режимы термообработки, изучены влияния напряжения на коррозионные свойства, что также позволяет формировать технологические процессы.
Упрочнение давлением
Этот способ был известен еще нашим предкам. Кузнецы увеличивали плотность материала, куя его на холодную. Это называлось отклепать косу или клинок. Сегодня этот процесс получил название ‒ нагартовка, которая в маркировке проката обозначается «Н». Современные технологии позволяют получать механическое упрочнение любой степени с высокой точностью. Например, «Н2» ‒ полунагартовка, «Н3» ‒ треть нагартовка и т. д.
Метод заключается в максимально возможном механическом обжатии с последующим частичным отожжением до необходимого технологического состояния.
Химическая обработка
Травление поверхности химическими реактивами. Способ применяется для изменения зернистости поверхности и придания ей матового или блестящего оттенка. Обычно методика используется как доработка поверхности проката, произведенного горячей деформацией.
Защита от коррозии
Кроме покрытия защитными лаками или композита с пластиком, в современной металлургии применяют 4 основных способа:
- анодирование – анодная поляризация в растворе электролита с целью получения оксидной пленки, защищающей от коррозии;
- пассивирование – защитный пассивный слой появляется вследствие воздействия окисляющих агентов;
- гальванический метод покрытия одного металла другим. Процесс достигается за счёт электролиза. В частности, покрытие стали никелем, оловом, цинком и другими металлами, устойчивыми к коррозии;
- плакирование – применяется для защиты алюминиевых сплавов, недостаточно устойчивых к коррозии. Методика заключается в механическом покрытии слоем чистого алюминия (прокатом, волочением).
Технология биметаллов
Метод основан на сращивании различных металлов посредством возникновения между ними диффузионной связи. Его суть состоит в необходимости получения материала, обладающего качествами двух элементов. Например, высоковольтные провода должны быть достаточно прочными и характеризоваться высокой электропроводимостью. Для этого сращивают сталь и алюминий. Стальная сердцевина провода принимает на себя механическую нагрузку, а алюминиевая оболочка становится превосходным проводником. В термометрической технике используют биметаллы с различным коэффициентом термического расширения.
В России биметаллы также используются для чеканки монет.
Механическая обработка
Это неотъемлемая часть любого металлообрабатывающего производства, которая выполняется режущим инструментом: резка, рубка, фрезеровка, сверление и др. На современном производстве применяются высокоточные и высокопроизводительные станки и комплексы с ЧПУ. При этом до недавнего времени новые технологии в обработке металлов были недоступны на строительных площадках при сборке металлоконструкций. Механизм выполнения производства работ по месту монтажа предусматривал применение ручных механических и электрических инструментов.
Сегодня разработаны специальные магнитные станки с программным управлением. Оборудование позволяет выполнять сверление на высоте под любым углом. Устройство полностью контролирует процесс, исключая неточности и ошибки, а также позволяет высверливать отверстия большого диаметра, что раннее на высоте было практически невозможно.
Обработка давлением
По способу обработка давлением различается на горячую и холодную деформацию, а по виду ‒ на штамповку, ковку, прокат, вытяжку и высадку. Здесь также внедрена механизация и компьютеризация производства. Это значительно снижает себестоимость продукта, в то же время повышает качество и производительность. Недавним достижением в области холодной деформации стала холодная ковка. Специальное оборудование позволяет с минимальными затратами производить высокохудожественные и одновременно функциональные элементы декора.
Сваривание
Среди ставших уже традиционными методами можно выделить электродуговую, аргонодуговую, точечную, роликовую и газовую сварку. Разделить сварочный процесс можно также на ручной, автоматический и полуавтоматический. При этом для высокоточных процессов сварки применяются новые методы.
Лазерная сварка
Благодаря применению сфокусированного лазера появилась возможность производства сварочных работ на мелких деталях в радиоэлектронике или присоединение твердосплавных режущих элементов к различным фрезам.
В недалеком прошлом технология обходилась достаточно дорого, но с применением современного оборудования, в котором импульсный лазер заменили газовым, методика стала более доступной. Оборудование для лазерной сварки или резки также оснащается программным управлением, а при необходимости производится в вакууме или инертной среде
Плазменная резка
Если по сравнению с лазерной резкой плазменная отличается большей толщиной реза, то по экономичности в разы её превосходит. Это самый распространенный на сегодня метод серийного производства с высокой точностью повторения. Методика заключается в выдувании электрической дуги высокоскоростной струей газа. Уже существуют и ручные плазменные резаки, которые являются превосходящей альтернативой газовой резке.
Новейшие разработки в производстве сложных и малоразмерных деталей
Какая бы совершенная не была механическая обработка у нее есть свой предел по минимальным габаритам производимой детали. В современной радиоэлектронике используются многослойные платы, содержащие сотни микросхем, каждая из которых содержит тысячи микроскопических деталей. Производство таких деталей может показаться волшебством, но это возможно.
Электроэрозионный метод обработки
Технология основана на разрушении и выпаривании микроскопических слоев металла электрической искрой.
Процесс выполняется на роботизированном оборудовании и контролируется компьютером.
Ультразвуковой метод обработки
Этот способ похож на предыдущий, но в нем разрушение материала происходит под воздействием высокочастотных механических колебаний. В основном ультразвуковое оборудование применяют для разделительных процессов. При этом ультразвук используется и в других областях металлообработки ‒ в очистке металла, изготовлении ферритовых матриц и др.
Нанотехнологии
Метод фемтосекундной лазерной абляции остается актуальным способом получения в металле наноотверстий. При этом появляются новые, менее затратные и более эффективные технологии. Изготовление металлических наномембран путем пробивания отверстий методом ионного травления. Отверстия получаются диаметром 28,98 нм с плотностью 23,6х10 6 на мм 2 .
К тому же ученые из США разрабатывают новый, более прогрессивный способ получение металлического массива наноотверстий методом испарения металла по шаблону из кремния. В наши дни свойства таких мембран изучаются с перспективой применения в солнечных батареях.
Источник
Статья «Современные технологии обработки металлов.»
статья по технологии
В современном и развивающемся мире появляются новые методы, более экономичные, безопасные и эффективные технологии обработки материалов.
Скачать:
Вложение | Размер |
---|---|
Статья о современных технологиях обработки металлов. | 341.79 КБ |
Предварительный просмотр:
Современные технологии обработки металлов.
Для удобства изучения множества новых технологий обработки металлов , которые используются в современности, их принято разделять на виды и методы.
Самым часто применяемым методом является механический, но его главным недостатком становится большое количество отходов при обработке. Так, например, штамповка – наиболее экономичный метод. Но в современном и развивающемся мире появляются новые методы, более экономичные, безопасные и эффективные. Таковыми являются методы, связанные с физическими свойствами металлов и химическими реакциями.
Технологии электроэрозионного метода обработки
Данная новая технология обработки металла основана на действии уменьшенного электрического разряда. Благодаря данной обработке создаются сложнейшие детали и заготовки, используемые в аппаратах и машинах. Для работы необходимо обеспечить безопасность сотрудников, так как температура в местах плавления металла может достигать до 10000 градусов по Цельсию. Такая температура просто испаряет металл и позволяет при помощи технологии выполнять самые сложные и причудливые детали.
Сейчас эта технология используется почти во всех производствах, но особенно распространена в машиностроении и авиастроении. Мелкие детали, используемые в двигателях и турбинах, производятся именно с помощью этого оборудования.
Подобные станки производятся отечественными заводами, при этом спектр выпускаемого оборудования очень широк: от оборудования для производства малых деталей до обработки крупных несколькотонных запчастей. Ознакомиться с ним можно на нашей выставке.
Технологии с использованием Ультразвука
При помощи оборудования имеется возможность создания ультразвуковых волн и инфразвуковых колебаний. И те, и другие колебания полностью безвредны для восприятия человеком, но в промышленности они находят широкое применение и подходят для работы с различными металлами – и с хрупкими, и с твердыми.
Сердцем станка является специальный преобразователь, который превращает электрический ток в высокочастотные колебания. Происходит это за счет движения тока по обмотке и создания переменного магнитного поля, которое колеблет преобразователь. Из колеблющегося преобразователя и исходит ультразвук.
Также используются специальные преобразователи, которые способны изменять амплитуды большого колебания в амплитуды малые и наоборот. К торцу волновода крепится приспособление необходимой формы, обычно форма приспособления совпадает с формой необходимого отверстия.
Подобные станки чаще всего используют для изготовления матриц и их повторной обработки, а также для выполненных из феррита ячеек памяти для различных микросхем и полупроводниковых приборов. Это далеко не весь спектр работ, производимых с помощью ультразвука. Еще возможны работы по сварке, мойке, очистке и контролю измерений. Причем вся работа, производимая оборудованием на ультразвуке, эффективна и качественна. С ультразвуковым оборудованием можно познакомиться на выставочных экспозициях.
Новые технологии электрохимической обработки
В производстве обычно используют электролиз. Это реакция, при которой ионы, полученные от растворенного вещества, движутся к катоду и аноду в зависимости от того, положительно или отрицательно они заряжены. Продукты произошедшей в результате этого реакции либо оседают на электродах, либо превращаются в раствор.
При помощи электролиза изготавливают рельефные слепки различных моделей из металла, а также декоративные покрытия для изделий, получают металлы из воды и руд. Эта же новая технология обработки металла используется на производствах хлора.
Благодаря технологии с использованием электролиза можно без особых временных затрат организовывать производство запчастей любой формы и сложности.
Проделывать пазы в деталях и разрезать уже имеющиеся заготовки. Существуют различные станки, которые применяют данный метод обработки. Главным преимуществом использования этого оборудования является возможность обработки любого металла, а также неизнашиваемость катода в процессе работы с металлом.
Несмотря на все успехи материаловедения, металл был и остаётся основой промышленности и строительства. Главной задачей технологов и конструкторов является разработка способов металлообработки, которые отличались бы наибольшей точностью, производительностью, и обеспечивали бы минимальный расход сырья.
Общая классификация
Различают три основных направления:
- Формоизменение при помощи высокоточных методов пластического деформирования.
- Применение традиционных способов металлообработки, но отличающихся повышенной точностью и производительностью.
- Использование высокоэнергетических методов.
Выбор оптимального метода обработки определяется производственными требованиями и серийностью производства . Например, переутяжелённые конструкции оборудования вызывают повышенный расход энергии, а сниженная точность изготовления отдельных деталей и узлов – низкую производительность техники. Некоторые технологии не могут обеспечить необходимые прочностные свойства и микроструктуру металла, что в итоге сказывается на долговечности и стойкости деталей, пусть даже и изготовленных с минимальными допусками. Новая технология обработки металла основана на использовании нетрадиционных источников энергии, которые обеспечивают его размерное плавление, испарение или формообразование.
Токарно-фрезерная обработка
Мех обработка, связанная со снятием стружки, развивается в направлении изготовления особо высокоточных изделий преимущественно в мелкосерийном производстве. Поэтому традиционные станки уступают место оперативно переналаживаемым металлообрабатывающим комплексам с ЧПУ. Сравнительно невысокий коэффициент использования материала ( при мех обработке он редко когда превышает 70…80% ) компенсируется минимальными допусками и высоким качеством финишной поверхности изделий.
Производители систем с числовым управлением делают основной упор на расширенные технологические возможности рассматриваемого оборудования, использовании современных высокостойких инструментальных сталей и исключении ручного труда оператора. Все подготовительно-заключительные операции на таких комплексах выполняет робототехника.
Энергосберегающие методы пластического деформирования металлов
Технология обработки металлов давлением, кроме повышенного коэффициента использования металла, обладает и другими существенными достоинствами :
- В результате пластического деформирования улучшается макро- и микроструктура изделия;
- Производительность оборудования для штамповки в разы превышает аналогичный показатель для металлорежущих станков;
- После обработки давлением повышается прочность металла, возрастает его стойкость от динамических и ударных нагрузок.
Прогрессивные процессы холодной и полугорячей штамповки – дорнование, точная резка, выдавливание, ультразвуковая обработка, штамповка в состоянии сверхпластичности, жидкая штамповка. Многие из них реализуются на автоматизированном оборудовании, оснащаемом компьютерными системами контроля и управления. Точность изготовления штампованных изделий во многих случаях не требует последующей их доводки – правки, шлифования и т.д.
Высокоэнергетические способы формоизменения
Высокоэнергетические технологии применяются в тех случаях, когда традиционными методами изменять форму и размеры металлической заготовки невозможно.
При этом используются четыре вида энергии :
- Гидравлическая — давления жидкости, либо отдельных элементов, приводимых ею в движение.
- Электрическая , при которой все процессы съёма материала выполняются с помощью разряда – дугового или искрового.
- Электромагнитная , реализующая процесс металлообработки при воздействии на заготовку электромагнитного поля.
- Электрофизическая , действующая на поверхность направленным лучом лазера.
Существуют и успешно развиваются также комбинированные способы воздействия на металл, при которых используются два и более источника энергии.
Гидроабразивная металлообработка основана на поверхностном воздействии жидкости высокого давления. Подобные установки применяются, в основном, с целью повышения качества поверхности, снятия микронеровностей, очистки поверхности от ржавчины, окалины и т.п. При этом струя жидкости может воздействовать на изделие как непосредственно, так и через абразивные компоненты, находящиеся в потоке. Абразивный материал, содержащийся в эмульсии, постоянно обновляется, чтобы обеспечить стабильность получаемых результатов.
Электроэрозионная обработка – процесс размерного разрушения (эрозии) поверхности металла при воздействии на него импульсного, искрового или дугового разряда. Высокая плотность объёмной тепловой мощности источника приводит к размерному плавлению микрочастиц металла с последующим выносом их из зоны обработки потоком диэлектрической рабочей среды (масла, эмульсии). Поскольку при металлообработке одновременно происходят процессы локального нагрева поверхности до весьма высоких температур, то в результате твёрдость детали в зоне обработки существенно увеличивается.
Магнитоимпульсная обработка заключается в том, что обрабатываемое изделие помещается в мощное электромагнитное поле, силовые линии которого воздействуют на заготовку, помещённую в диэлектрик. Таким способом производят формовку малопластичных сплавов (например, титана или бериллия), а также листовых заготовок из стали. Аналогичным образом на поверхность действуют и ультразвуковые волны , генерируемые магнитострикционными или пьезоэлектрическими преобразователями частоты. Высокочастотные колебания применяются также и для поверхностной термообработки металлов.
Наиболее концентрированным источником тепловой энергии является лазер. Лазерная обработка – единственный способ получения в заготовках сверхмалых отверстий повышенной размерной точности. Ввиду направленности теплового действия лазера на металл, последний в прилегающих зонах интенсивно упрочняется. Лазерный луч способен производить размерную прошивку таких тугоплавких химических элементов, как вольфрам или молибден.
Электрохимическая обработка – пример комбинированного воздействия на поверхность химическими реакциями, возникающими при прохождении через заготовку электрического тока. В результате происходит насыщение поверхностного слоя соединениями, которые могут образовываться лишь при повышенных температурах: карбидами, нитридами, сульфидами. Подобными технологиями может выполняться поверхностное покрытие другими металлами, что используется для производства биметаллических деталей и узлов (пластин, радиаторов и т.д.).
Современные технологии обработки металлов непрерывно совершенствуются, используя новейшие достижения науки и техники
Источник