Культивирование микроорганизмов.
В мире существует два основных способа культивирования микроорганизмов: периодическое (статическое) и непрерывное (проточное).
Периодическое (статическое) культивирование
Рост бактерий в периодической культуре происходит до тех пор, пока содержание какого-нибудь из компонентов питательной среды не достигнет минимума, после чего рост прекращается. Если на протяжении этого времени не добавлять питательных веществ и не удалять конечных продуктов метаболизма, то получим так называемую периодическую культуру (популяцию клеток в ограниченном жизненном пространстве).
Сл. 8. Изменение численности популяции клеток при периодическом культивировании имеет определенную закономерность. Если по оси абсцисс отложить время, а по оси ординат – логарифм числа жизнеспособных клеток, то можно построить кривую роста бактерий. Типичная кривая роста имеет S- образную форму. Анализируя кривую можно различить несколько фаз роста, сменяющих друг друга в определенной последовательности:
Начальную или лаг-фазу;
Экспоненциальную или логарифмическую фазу;
Стационарную фазу;
Фазу отмирания.
Кривая роста бактериальной культуры:
1) лаг-фаза; 2) экспоненциальная фаза;
3) стационарная фаза; 4) фаза отмирания.
Лаг-фаза включает период от посева бактерий на свежую питательную среду до достижения ими максимальной скорости роста. В начале лаг-фазы бактерии приспосабливаются к новым условиям. В клетках идет синтез ферментов, нуклеиновых кислот, белков, активируются обменные процессы. Клетки интенсивно растут, и размеры их заметно увеличиваются. Деления бактерий на этой стадии практически не происходит. Длительность этой фазы зависит от полноценности питательной среды и от состояния культуры микроорганизма. Чем полноценнее питательная среда и чем моложе культура бактерий, тем короче лаг-фаза.
Экспоненциальная фаза характеризуется активным делением подавляющей массы клеток бактериальной популяции. Число клеток возрастает в геометрической прогрессии. Характеризуется постоянной максимальной скоростью или скоростью роста. Эта скорость зависит от вида бактерий. Бактерии E. coli при 37 0 С делятся каждые 20 мин, а бактерии родов Nitrosomonas и Nitrobacter – 5-10 часов.
Во время этой фазы клетки имеют приблизительно равный размер, содержание белка в них тоже постоянно. Клетки содержат максимальное количество РНК. Клетки на этой фазе наиболее жизнеспособны и обладают высокой биохимической активностью.
Стационарная фаза наступает тогда, когда число живых клеток достигает максимума и перестает увеличиваться, так как скорость размножения бактерий равна скорости их отмирания. Так как скорость роста зависит от концентрации субстрата, то при уменьшении этой концентрации, еще до полного использования субстрата, она начинает снижаться. Скорость роста может снижаться не только из-за нехватки субстрата, но также из-за большой плотности бактериальной популяции, из-за низкого парциального давления О2 или накопления токсичных продуктов обмена. Клетоки по химическому составу отличается от состава клеток в экспоненциальной фазе. Клетки в стационарной фазе меньше по размеру, содержат меньше РНК, более устойчивы к физическим воздействиям и химическим агентам, чем в экспоненциальной фазе роста культур. В этот период в клетках и в среде нередко накапливаются продукты вторичного метаболизма (антибиотики, пигменты, бактериоцины и др.). Продолжительность этой фазы от нескольких часов до недели в зависимости от вида микроорганизмов.
В стационарную фазу роста поведение клеток бактериальной популяции регулирует такое явление как апоптоз. Суть его сводится к тому, что при исчерпании питательного субстрата голодающая популяция разделяется на две субпопуляции, одна из которых гибнет и подвергается автолизу, а клетки другой субпопуляции, используя продукты автолиза как субстрат, продолжают размножаться.
В фазе отмиранияпроисходит снижение числа живых клеток. Скорость отмирания бактерий широко варьирует в зависимости от условий и особенностей организма. Например, энтеробактерии отмирают медленно в отличие от некоторых видов бактерий рода Bacillus, которые отмирают быстро. Причины отмирания клеток могут быть разными. Это и накопление органических кислот (как у бактерий родов Escherichia. Lactobacillus), автолиз (лизис под действием собственных ферментов), накопление антибиотиков, бактериоцинов и другие причины. Сл. 9
Непрерывное проточное культивирование заключается в том, что в сосуд, содержащий популяцию бактерий, периодически подается свежая питательная среда и одновременно удаляется из него избыток среды с клетками микроорганизмов. Это позволяет задержать культуру в состоянии экспоненциального роста.
Проточное культивирование осуществляется в аппаратах двух типов: хемостатах и турбидостатах.
В хемостатах рост бактериальной популяции контролируется концентрацией питательного субстрата по источнику углерода и азота. Для равномерного распределения питательных веществ содержимое культиватора механически перемешивается и аэрируется стерильным воздухом. Излишняя микробная масса с питательной средой через сливной сифон вытекает из культиватора.
Турбидостат – это тот же хемостат, но снабженный фотоэлекрическим элементом, регистрирующим мутность среды. Когда плотность биомассы увеличивается относительно некоторого выбранного уровня, фотоэлемент, соединенный системой реле, подает свежую питательную среду.
Для глубинного культивирования бактерий с аэрацией в промышленных и лабораторных условиях применяют биореакторы или ферментеры. Ферментерыпредставляют собой герметические котлы, в которые заливается жидкая питательная среда. Ферментеры снабжены автоматическими приспособлениями, позволяющими поддерживать постоянную температуру, оптимальную рН и редокс-потенциал, дозированное поступление необходимых питательных веществ. Кроме того, они продуваются стерильным воздухом и в них установлены мешалки, с помощью которых среда постоянно перемешивается.
Непрерывное культивирование широко используется в промышленной микробиологии. Кроме того, оно используется при проведении физиологических, биохимических, генетических исследований, так как при данном культивировании поддерживается постоянство плотности популяции и концентрации всех компонентов питательной среды.
Однако, часто для изучения процессов обмена веществ необходимо, чтобы все клетки суспензии делились одновременно (синхронно). Культуры. в которых все клетки находятся на одинаковой стадии клеточного цикла и делятся одновременно, называются синхронными. Синхронизировать деление какой-нибудь популяции можно с помощью различных искусственных приемов, таких как изменение температуры, воздействие света (для фототрофных микроорганизмов), ограничение количеств питательных веществ или пропускание микроорганизмов через специальный фильтр, чтобы получить клетки одного размера. Но синхронизированная культура после 2-3 генераций переходит к асинхронному делению.
Культивирование иммобилизованных клеток микроорганизмов находит широкое применение в биотехнологии, а именно в производстве ценных органических веществ, в деградации вредных производственных соединений и промышленных отходов с целью очистки сточных вод от загрязнений.
Методы иммобилизации клеток основаны на способности микроорганизмов к адсорбции на твердых поверхностях. Существуют химические, механические и физические методы иммобилизации микроорганизмов.
Химический способ заключается в образовании ковалентной связи между какой-то из функциональных групп на поверхности клетки и носителем. Этот метод применяется редко, так как клетки в этом состоянии могут терять активность.
Механический метод основан на полимеризации какого-либо мономера, смешанного с суспензией бактерий. В результате микроорганизм оказывается заключенным в ячейку, которая ограничивает его перемещение. но не препятствует поступлению питательных веществ. Чаще всего в виде носителя используется ПААГ полиакриламидного геля. В настоящее время разрабатываются методы иммобилизации клеток путем их включения в белковые мембраны с использованием коллагена, козеина, миозина и других белков или полипептидов. Мембраны с иммобилизованными клетками сворачивают в рулон и помещают в колонку, через которую пропускают субстрат.
Сл. 10. Физический метод иммобилизации заключается в адсорбции микроорганизмов на поверхности различных синтетических пористых материалов.
Иммобилизованные клетки сохраняют высокую ферментативную активность, что позволяет использовать их в непрерывно действующих технологических процессах. При этом также облегчается выделение продуктов биосинтеза.
Источник
Способы культивирования микроорганизмов
ЛЕКЦИЯ 4
Микроорганизмы, используемые в промышленных производствах
1. Требования к промышленным микроорганизмам и параметры их роста
Способы культивирования микроорганизмов и устройство ферментера
Микробиологическое производство биологически активных веществ
Промышленное производство органических кислот, растворителей, лечебных препаратов
Требования к промышленным м-мам и параметры их роста
Благодаря широкому набору разнообразных ферментных систем м-мы способны образовывать в процессе метаболизма различные продукты обмена, которые являются ценными для человека. Кроме того, м-мы также способны трансформировать природные и химически синтезированные продукты в в-ва, необходимые человеку.
Микробиологические производства в последние годы приобрели особенное развитие благодаря детальному изучению физиолого-биохимических и генетических свойств м-мов. В промышленных пр-ах используют разные м-мы: наиболее широко – дрожжи, реже – плесневые грибы, а также аэробные и анаэробные бактерии.
Так, различные расы дрожжей р.Saccharomyces cerevisiae используют для приготовления вина, пива, хлеба и получения этилового спирта. Дрожжи р.Candida используют для пр-ва белка и витаминов (на непищевом сырье).
Плесневые грибы используют для получения органических к-от: лимонной (Aspergillus niger), глюконовой (A. niger, Penicillium chrysogenum), итаконовой (A. tereus), фумаровой (Rhizopus nigricans); антибиотиков пенициллина (P.chrysogenum, P.notatum) и цефалоспорина (Cephalosporium sp.); препаратов витамина В2 (Eremothecium ashbyii) и β-каротина (Blackeslea trispora).
Среди бактерий промышленное применение имеют прокариоты различных таксономических групп. Они применяются для пр-ва пищевых продуктов (солений и маринадов – Leuconostoc, Pediococcus, Lactobacillus, кисломолочных – Lactobacillus, Streptococcus , уксуса – Acetobacter aceti); пищевых и кормовых добавок (аминокислот – Corynebacterium, Brevibacterium, инозиновой к-ты — Corynebacterium, витаминов – Bacillus subtilis); ферментов (протеазы – Bacillus licheniformis, амилазы – B. amiloliquefaciens, B. licheniformis, глюкозоизомеразы – Streptomyces sp.); растворителей (этанола – Zymomonas mobilis, бутанола и ацетона – Clostridium acetobutylicum, молочной к-ты – Lactobacillus sp.); полисахаридов (ксантана – Xanthomonas campestris, декстрана – Leuconostoc mezenteroides, альгинатов – Azotobacter vinelandii); лечебных средств (стероидов — , антибиотиков – Bacillus sp., аминокислот — Bacillus); бактериальных препаратов (удобрительных — Rhizobium, для защиты растений – Bacillus thuringiensis).
Штаммы-подуценты м-ов, используемых в промышленности, должны обладать следующими св-ами:
1)способность расти в чистой культуре (в частности, бактерии – без фагов) и быть генетически стабильными;
2)отсутствие патогенности и токсинообразования;
3)высокая скорость роста при массовом культивировании и способность синтезировать продукт в большом к-ве за период не более 3-х суток;
4) устойчивость к загрязнению.
Большинство м-ов, используемых в микробиологических процессах, являются прототрофами. Прототрофы– м-мы, которые синтезируют все необходимые для них органические в-ва, в том числе и факторы роста. Ауксотрофы – м-мы, не способные синтезировать факторы роста. Факторы роста – органические соединения (витамины, аминок-ты, азотистые основания), необходимые в очень малых к-вах.
Многие микробиологические пр-ва базируются на использовании растущих культур соответствующих видов. Однако, для получения некоторых продуктов используют суспензии отмерших клеток, а также иммобилизованные клетки м-ов.
При культивировании м-ов в промышленных условиях определяют ряд параметров, влияющих на процессы роста или образование определенных метаболитов. Различают физические, химические и биологические параметры.
Физические: температура, давление энергозатраты, вязкость, скорость потока воздуха и жидкости, мутность, масса ферментера.
Химические: рН, растворенный кислород, кислород и углекислый газ в выходящем газе, окислительно-восст. потенциал, конц-ция субстрата, конц-ция продукта, ионная сила раствора.
Биологические: метаболиты, активность ферментов, содержание ДНК и РНК, содержание АТФ и НАДН2 , содержание белка.
Кроме этого учитываются количественные параметры: удельная скорость роста, время удвоения биомассы, урожай культуры (выход биомассы) и экономический коэффициент.
Выход конечного продукта по отношению к использованному субстрату характеризуют показателем экономического коэффициента (Y)и рассчитывают по источнику углерода, азота или фосфора.Он оценивает рост определенного вида м-мов на различных средах и в различных условиях культивирования. Эк. коэф. определяют соотношением:
Y= λx / λs
где: λx увеличение биомассы, соответствующее количеству использованного субстрата λs.
Удельная скорость роста — µ(прирост биомассы за единицу времени на единицу времени) является важной хар-кой как самого м-ма, так и условий его культивирования. Удельнуя скорость роста м-ма лимитирует концентрация субстрата и накопление продуктов обмена.
Время удвоения биомассы (время генерации) – g является критерием скорости роста микробной популяции:
g = t = —— = ———
µ µ
Это — время удвоения к-ва клеток или биомассы.Времягенерации для разных м-ов зависит от условий культивирования.
Урожай культуры (выход биомассы) –это мах количество клеток или биомассы, которую можно получить при определенных условиях в единице объема. Эта величина выражается в количестве клеток в 1мл или 1л среды. На величину урожая оказывают влияние условия культивирования (состав среды, аэрация, рН, температура и др.).
Способы культивирования микроорганизмов
и устройство ферментера
Различают два основных способа культивирования микроорганизмов – поверхностный и глубинный.
При поверхностном культивировании м-мы выращивают на поверхности тонкого слоя жидкой среды или твердого субстрата. Методы культивирования на твердом субстрате разделяют на 2 группы: 1) посев на поверхность тонкого слоя среды, 2) глубинный посев.
При тонкослойной схеме субстрат вносят толщиной 2-4см на металлическую или деревянную емкость и проводят культивирование в хорошо проветриваемых помещениях (для удаления тепла, образующегося при росте культуры). Для поверхностного культивирования в качестве сырья используют свекольный жом, виноградную мезгу, зерновую мякину, пшеничные или рисовые отруби и т.д. Влажность субстрата – 40-70%. Наиболее часто этот способ используют при выращивании грибов.
При глубинном посеве культуру вносят в субстрат, которым заполняют емкость на глубину 0,6 или 1,5-1,8 м. Как правило, эти операции автоматизированы.
Глубинное культивирование– главный способ микробиологического пр-ва, в котором различают открытые и замкнутые системы. В открытых системах клетки легко вымываются и образуются новые, в замкнутых – к-во клеток постоянно увеличивается (накапливается).
Глубинное культивирование имеет ряд преимуществ по сравнению с поверхностным: менее трудоемкое, требует меньших площадей, имеет меньшую вероятность инфицирования. Кроме того, существует возможность тщательного контроля пр-ва, его автоматизации и получение высокого выхода продукта.
Известно два вида глубинного культивирования: периодическое и непрерывное. При периодическом изменяется скорость роста, физиолого-биохимические и морфологические характеристики культуры.
А. Периодическое (накопительное) культивированиехарактеризуется следующими чертами: а) полный цикл ферментации проходит в замкнутом объеме среды; б) скорость прироста биомассы лимитируется истощением питательной среды, накоплением шлаков – продуктов метаболизма.Используется в производстве аминокислот, витаминов, антибиотиков, ферментов, других БАВ.
В этих условиях м-мы проходят определенный цикл развития, для которого характерна смена фаз. Выделяют 4 основные фазы роста периодической культуры:
1.Лаг-фаза – фаза скрытого роста. С момента инокуляции. Клетки не размножаются. Идет адаптация к новой среде.
2.Логарифмическая (экспоненциальная) фаза. Скорость роста культуры максимальная: быстро увеличивается, высокая биохимическая активность
3.Стационарная фаза – количество нарождающихся клеток = кол-ву отмирающих: незначительный прирост биомассы. Накопление метаболитов и токсинов, исчерпание питательной среды.
4.Фаза массовой гибели клеток (отмирание): уменьшается к-во живых клеток, начинается их лизис под действием собственных ферментов (автолиз).
Б. Непрерывное культивирование характеризуется следующими чертами: а) периодическое (полупроточное) или непрерывное разбавление ферментирущей массы свежей питательной средой; в) скорость прироста биомассы не лимитируется. Используется для получения спиртов, кислот, растворителей.
Преимущества: использование спецоборудования, стабилизация во времени, улучшение качества продукта, возможность автоматизации.
Непрерывное культивирование осуществляется разными процессами: 1)Процесс полного вытеснения проводят в трубчатом ферментере, в который с одной стороны подается питательная среда и посевной материал, а с другой – вытекает культура. Такой процесс применяют в пищевой промышленности, в частности при пр-ве пива.
2)Процесс полного замещения проводят в ферментерах при интенсивном воздушном или механическом перемешивании. Этот способ часто называют гомогенно-непрерывным. В ферментере создаются условия, которые соответствуют определенной фазе роста м-ов. При быстром замещении среды – это условия экспоненциальной фазы, при медленном – стационарной.
В зависимости от используемого оборудования различают два вида непрерывного культивирования м-ов: хемостатный и турбидостатный.
Хемостат – аппарат для выращивания м-ов, в который с постоянной скоростью поступает питательная среда и с такой же скоростью происходит отток культуры. В хемостате длительное время поддерживается постоянный урожай культуры, скорость роста и концентрация питательной среды.
Турбидостат – в среде поддерживается постоянный уровень биомассы м-ов, который регистрируется по оптической густоте культуры специальным устройстврм с фотоэлементом. В этом оборудовании скорость накопления биомассы определяет скорость притока питательной среды (это основное отличие!).
Метод непрерывного культивирования приобретает все большее практическое значение, т.к. он позволяет получить высокий выход микробных продуктов и обеспечивает контроль производства.
Ферментер(биореактор) – это устройство для культивирования м-ов, которое обеспечивает оптимальные условия для их роста и метаболической активности, а также защиты от внешнего загрязнения.
Основные блоки ферментера (по Нетрусову): ротаметр (для подачи воздуха), снабженный бактериальным фильтром для стерилизации воздуха; магнитная мешалка; обратный холодильник; бактериальный фильтр для стерилизации выходящего воздуха; сосуд с дезраствором для стерилизации выходящих газов; стерильный пеногаситель; система для нагревания питательной среды в ферментере; емкость для суспензии м-ов; емкость для стерильной питательной среды; насос; блок управления.
С целью улучшения снабжения м-ов кислородом, проводят аэрацию питательной среды путем постоянного перемешивания на качалках разного типа. В производстве для культивирования аэробных м-ов используют ферментеры, оснащенные мешалками и нагнетателями воздуха.
Анаэробные м-мы культивируют в специальных аппаратах – анаэростатах,в анаэробных боксах в специальной герметической посуде в атмосфере азота или инертного газа (аргона).
Фототрофные бактерии выращивают в специальных устройствах: люминостатах:термостатах, оснащенных лампами дневного света.
Источник