Периодическая культура способы культивирования

Периодическое культивирование.

Периодическим (стационарным) называют такой метод культивирования, когда клетки микроорганизмов вносят в питательную среду и далее компоненты среды не поступают в сосуд и не удаляются из него.

Периодическое культивирование микроорганизмов представляет с точки зрения техники наиболее простой метод культивирования. Под культивированием микроорганизмов понимают их выращивание в наиболее благоприятных (оптимальных) условиях.

При периодическом способе культивирования питательная среда засевается исходной культурой продуцента — инокулятом (от лат. inoculatio – прививка). Инокулят иначе называют посевным материалом, а инокуляцию называют посевом. Далее в этой же емкости микроорганизмы при определенных условиях проходят через все стадии роста и развития популяции. При таком способе культивирования (его можно назвать «закрытой» системой, когда хотя бы один из компонентов не может поступать в нее или выводиться из нее) скорость роста биомассы всегда должна стремиться к нулю либо из-за недостатка питательных веществ, либо из-за накопления в среде токсических метаболитов. Поскольку при периодическом способе культивирования микроорганизма всегда имеет место некоторая неустойчивость в системе.

В простой гомогенной периодической культуре все ее части находятся в одинаковых условиях. Для феноменологического описания роста микроорганизмов в периодическом режиме обычно используют кривую роста (рис. 21). Она имеет S-образный характер. Различные фазы роста такой культуры отражают изменения в биомассе и в окружающей среде. Продолжительность каждого периода зависит от вида культуры, количества и качества посевного материала, состава питательной среды и условий культивирования.

Периодическая культура начинается с лаг — фазы, которая является совершенно необязательной фазой роста. Ее возникновение зависит от несоблюдения оптимальных условий для роста посевного материала. Происходит перепад концентраций элементов питания, особенно углеродного, от сниженных – в выросшей культуре, из которой берется посевной материал, к высоким – в свежей среде. В этот период культура как бы адаптируется (привыкает) к новой среде обитания. Истощенные клетки старого посевного материала должны перейти из состояния голодания или отравления в состояние, соответствующее способности к размножению, которое определяется необходимым количеством и состоянием рибосом, способностью и условиями к репликации, синтезу клеточной стенки и т. п. Продолжительность этой фазы зависит от физиологических особенностей микроорганизма, состава посевной и производственной сред и условий культивирования. Чем эти различия меньше и чем больше посевная доза, тем короче I фаза роста.

Рисунок21. Фазы на кривой роста периодической культуры: I – лаг-фаза; II – фаза ускорения роста; III – фаза экспоненциального роста; IV – фаза замедления роста; V – стационарная фаза; VI – фаза отмирания.

II фаза называется фазой ускорения роста, она характеризуется началом деления клеток, увеличением общей массы популяции и постоянным увеличение скорости роста культуры; обычно она непродолжительна.

Далее следует экспоненциальная фаза, в наибольшей степени характеризующая и выражающая способность культуры к размножению. В этой фазе сведены к минимуму все лимитирующие и ингибирующие влияния. Компоненты питательной среды имеются в избытке, продукты обмена еще не накопились. Рост идет с максимально возможной скоростью, генетически заложенной в клетке, интервалы между появлением предыдущего и последующего поколений постоянны. Логарифм числа клеток линейно зависит от времени. Если же среда по своему начальному составу не оптимальна, то рост будет ограничен неподходящим питанием или неоптимальным значением рН и т. п. В этом случае рост может быть описан более пологой экспонентой или прямой. Эта фаза в лабораторных условиях не может быть длительной, так как даже не очень плотная популяция вскоре начнёт испытывать недостаток в кислороде из-за его быстрого поглощения и слабой растворимости.

Фаза замедления роста может быть очень разнообразной и самой сложной. Она может полностью отсутствовать на простых синтетических средах, когда рост сразу останавливается из-за отсутствия одного элемента питания, в особенности – источника углерода и энергии. Рост клеток прекращается, и наступает стационарная фаза, в данном случае – фаза голодания по использованному элементу питания. Возникает и пространственная ограниченность, клетки мешают друг другу, уменьшаются поверхности их контакта со средой, ухудшаются поступление питательных веществ внутрь клетки и выброс продуктов метаболизма. На сложных средах, содержащих несколько источников углерода, может происходить поочередная их утилизация и постепенное замедление роста. При избытке питания рост замедляется из-за накопления продуктов метаболизма. Токсичные продукты метаболизма у микроорганизмов весьма разнообразны. Возможно одновременное отравление и голодание. В соответствии с этим и стационарная фаза может содержать самые разнокачественные клетки: живые, но голодающие, живые, но ингибированные, отмирающие по причине голодания или отравления.

Читайте также:  Лямблиоз симптомы лечение способы

Стационарная фаза не характеризует культуру, так как в этот период состояние клеток может быть самым разнообразным. Масса и количество всех живых клеток во время этой фазы достигают своего максимума. Количество вновь образовавшихся клеток становится на этом этапе равным количеству клеток, отмерших и автолизовавшихся. В какой-то момент это равновесие нарушается, и количество отмерших клеток становится больше вновь образовавшихся, наступает VI фаза – фаза отмирания. На этой стадии масса живых клеток значительно уменьшается, так как запасные вещества клетки исчерпываются.

Только экспоненциальная фаза до некоторой степени характеризует свойства культуры.

Таким образом, клетки периодической культуры претерпевают значительные изменения всех свойств по всему периоду роста, обусловленные непрерывными изменениями окружающей среда и быстрой реакцией на них клеток. Тем не менее, периодические методы культивирования микроорганизмов широко используются в настоящее время в промышленной биотехнологии и исследовательской практике. Техника периодической культуры позволяет получить исходные данные, и расходные коэффициенты, и кинетические характеристики культуры, необходимые для перехода к проточным системам и масштабированию процесса.

Источник

Периодическое культивирование микроорганизмов

В периодическом состоянии динамика роста и размножения микро­организмов в жидкой питательной среде обладает рядом особенностей, общих для бактерий, актиномицетов, микроскопических грибов, микоплазм и других про- и эукариот. При индивидуальном развитии им свойственна высокая скорость размножения. Развитие происходит в виде последовательных фаз, характер и продолжительность которых зависят от физиологического состояния клеток, определяемого в свою очередь условиями разнообразных факторов среды, в которой разви­ваются популяция того или иного организма.

Другими словами, фазы роста микроорганизма отражают количест­венные и качественные изменения в их биомассе и окружающей среде.

В простой гомогенной периодической культуре микроорганизмов выделяют от 4 до 8, и даже до 16 фаз.

1. Исходная фаза (лаг-фаза или индукционный период) являет­ся фазой задержки роста, когда размножения микробных клеток не происходит. Эта фаза характеризуется отсутствием роста клеток. В этот период посевная культура приспосабливается к изменившимся внешним условиям и вырабатывает ферменты, необходимые для роста на данной питательной среде. В лаг-фазе в клетках культуры происхо­дят значительные качественные изменения: возрастет количество нук­леиновых кислот, в первую очередь РНК, активизируются одни фер­менты и синтезируются другие.

Продолжительность лаг-фазы зависит от следующих факторов:

— от состава питательной среды — если питательная среда по составу мало отличается от среды, на которой росла посевная культура, лаг-фаза может практически отсутствовать;

— от качества посевного материала

количества в нем жизнеспо­собных клеток, их возраста, способа хранения;

— от посевной дозы.

2. Период положительного ускорения роста. Длительность этого периода для большинства микроорганизмов составляет 2 часа, и она зависит от температуры, состава питательной среды, качества посевно­го материала. Многие авторы эти две фазы рассматривают вместе. Число клеток остаётся постоянным из-за отсутствия в этот период кле­точного деления. Общее состояние микробных клеток характеризуется как состояние приспособления к питательной среде. В этот период усиливается синтез веществ, клеток, они увеличиваются в размере, в них образуется большое количество индуцибельных ферментов.

3. Фаза логарифмического (лог-фаза) или экспоненциального (показательного) роста. Она характеризуется постоянной и макси­мальной скоростью роста клеток. Рост микробов в эту фазу происхо­дит в геометрической прогрессии.

Продолжительность этой фазы зависит:

Читайте также:  Способ парковки не указан

— от запаса питательных веществ в среде;

— от условий аэрации;

— от перемешивания и др. факторов.

Для описания процессов роста микроорганизмов используют такие характеристики, как общая и удельная скорости роста биомассы (или числа клеток). Другой важной характеристикой роста культуры явля­ется время генерации, за которое биомасса культуры удваивается. Время генерации из разных культур микроорганизмов сильно различа­ется. Наиболее быстрорастущие бактерии при благоприятных услови­ях генерации имеют период генерации — 20-25 мин.

Продолжительность генерации в лог-фазе у разных микроорганиз­мов не одинакова. Так, для сальмонелл она равна 20-30 мин., для стрептококков и стафилококков — 25-35 мин., для эшерихий — 15-17 мин.

На продолжительность генераций влияют температура, рН среды, состав среды и т. д.

Если на единицу объема растущей периодической культуры прихо­дится а0 клеток — это число клеток, которое внесли в питательную сре­ду с маточной культурой в момент to, то после п делений за время t число клеток будет Ао х 2 n = Аt

Логарифмируя это выражение получим: lg Аt == lg Ао + п lg 2.

Количество клеток в момент to и t определяют подсчетом в камере Горяева с помощью автоматических счетчиков, используемых для подсчета форменных элементов крови типа Целлоскоп или Каултера, или спектро-фотометрически (турдиметрически или нефелометрически). Однако с помощью этих методов определяются как живые, так и мертвые клетки.

В некоторых случаях проводят подсчет только живых клеток. Для этого производят высев клеток на плотные питательные среды с по­следующим подсчетом числа колоний, образуемых жизнеспособными клетками.

Из приведенного уравнения можно рассчитать количество делений клеток и константу скорости деления (V) — число клеточных делений в 1 час.

Рассмотрим конкретный пример. В питательную среду внесли 1000 (10 3 ) клеток. Через 10 часов культивирования в среде выявили 10 9 (1 миллиард) микробных клеток.

Константа скорости деления (число клеточных делений в час) рав­на:

Ig10 9 – lgl0 3 9-3 6

0,3010×10 0,3010×10 3,010

Число клеточных делений равно:

IglO 9 — lglO 3 9-3 6

Время, необходимое для одного клеточного деления (tn),или время генерации:

Эти данные используют при выборе производственных штаммов и для их объективной оценки. Рост периодической культуры можно проследить не только по чис­лу клеток, но и по урожаю клеток. Под урожаем понимают разность между полученной и исходной массами бактерий. Массу выражают в граммах сухого вещества. Это имеет производственное значение, т.к. рост микробной клетки сопровождается не только делением клеток, но и увеличением размеров и массы одной конкретной особи между дву­мя делениями.

Обозначим первоначальную массу клеток Ао, а Аt масса клеток через время t. Тогда урожай бактериальной массы А = аt -a0.

Еще одним важным производственным показателем характеристи­ки штаммов бактерий является скорость экспоненциального роста. Для ее расчета используют показатель плотности бактериальной суспен­зии. Это связано с тем, что константа скорости роста и константа ско­рости деления клеток не равноценны, т.к. число и масса клеток не идентичные понятия и во время роста периодической культуры соот­ношение между этими двумя показателями изменяется.

Обозначим константу скорости роста — ц, начальную плотность суспензии бактерий через Хо (г/см 3 ), а конечную Xt (г/см 3 ), при этом начальное время to, а конечное время t1. Тогда константу скорости рос­та вычисляют по формуле:

t- время культивирования, час; lg e == 0,43429.

Время удвоения клеточной массы td можно рассчитать по формуле:

ln — натуральные логарифмы при основании e, е = 2,71828.

С экономической точки зрения важным показателем процесса культивирования является показатель, называемый экономическим коэффициентом. Если обозначить его через букву Y, его можно рас­считать по формуле:

где S — количество потребленного субстрата (г); А — сухая бакмасса (г).

Высокая скорость развития микроорганизмов сохраняется на всей экспоненциальной стадии. Однако эта зависимость наблюдается в те­чение ограниченного времени. По мере роста культуры в среде посте­пенно потребляются питательные вещества, накапливаются продукты обмена, затрудняется транспорт питательных веществ (в первую оче­редь кислорода) и метаболитов вследствие увеличения плотности по­пуляции.

Читайте также:  Как поменять колесо без домкрата простой способ

4. Фаза отрицательного ускорения. В эту фазу скорость размно­жения замедляется, а время генерации увеличивается. Наступление этой фазы обусловлено истощением питательной среды и накоплением в культуральной жидкости токсических веществ, которые начинают ингибировать развитие культуры. Кроме того, в эту фазу происходит наивысшее накопление микробной массы в единице объёма.

5. Стационарная фаза роста, или максимума, на протяжении ко­торой численность микробной популяции не уменьшается. В эту фазу скорость размножения и отмирания клеток одинаковая. Концентрация живых клеток в эту фазу достигает максимума, и она называется М-концентрацией. В этой фазе сама биомасса микроорганизмов и про­дукты их биосинтеза обладают наибольшей биотехнологической цен­ностью.

6. Фаза отмирания микробной популяции. Любая микробная популяция, растущая в сосуде с несменяемой средой, вступает после фазы стационарного роста в стадию отмирания. По скорости отмира­ния вначале устанавливают фазу ускоренного отмирания (VI), затем фазу постоянной скорости отмирания (VII) и фазу замедленной скоро­сти отмирания (VIII). Причинами отмирания микробной популяции являются истощение среды и накопление в ней большого количества токсических продуктов метаболизма. В период стадии отмирания об­щее количество биомассы уменьшается, что чаще всего происходит за счет аутолиза.

Продолжительность стадии отмирания у различных микроорганиз­мов не одинакова: у пневмококка она составляет 2-3 суток, у эшери-хий — несколько месяцев. В этот период в культуре находят значитель­ное уменьшение клеток. У них уменьшается биохимическая и анти­генная активность.

Учитывая это для изготовления ряда биопрепаратов отбирают культуры микроорганизмов чаще всего в фазе отрицательного ускоре­ния роста, или в начале стационарной фазы роста, когда концентрация живых микробных клеток приближается или равна М-концентрации.

Хемостатная культура, или метод непрерывного культивирования микроорганизмов

Хемостатная, или непрерывная, культура представляет собой проч­ную культуру тех или иных микроорганизмов. В таком случае воз­можность продления жизни микробной популяции поддерживается с помощью непрерывной подачи свежей среды и постоянного отбора микробной биомассы или образовавшихся продуктов метаболизма, т.е. можно культуру микроорганизма как бы зафиксировать в одной, например стационарной, фазе роста и получать нужные продукты об­мена или биомассу во времени столько, сколько требуется. Таким об­разом, максимальная производительность в хемостатной культуре все­гда выше, чем максимальная производительность в периодической культуре.

Нужно сказать, что до 50-х годов для культивирования микроорга­низмов с целью их всестороннего изучения служила простая периоди­ческая культура. Только с переходом к методу хемостатного культи­вирования обнаружился недостаток периодической культуры, которая не даёт полного представления обо всех изменениях, происходящих в клетке, и о влиянии внешних факторов на протекающие в ней процес­сы.

Развитие хемостатного культивирования открыло возможность управлять процессом, контролируя рост и поведение микроорганиз­мов, а при необходимости вмешиваться в этот процесс, изменяя ско­рость роста до задаваемых пределов путём воздействия на такую куль­туру внешними факторами. В настоящее время интерес к непрерывно­му культивированию растёт как в нашей стране, так и за рубежом. Од­нако, несмотря на преимущества хемостатных культур, в биологиче­ской промышленности при производстве вакцин они не получили ещё достаточного применения по следующим причинам:

1. Технические трудности, в первую очередь связанные с создани­ем асептических условий.

2. Не во всех случаях непрерывный процесс предпочтительнее пе­риодического, поскольку при низкой удельной скорости роста биомас­сы периодический процесс по эффективности не уступает непрерыв­ному и более выгоден, т. к. его проще осуществить.

3. Интенсивный биосинтез многих продуктов метаболизма проис­ходит при медленном росте биомассы, поэтому в периодических про­цессах концентрация целевого продукта в культуральной жидкости обычно выше, чем в непрерывных, что существенно повышает эффек­тивность стадий выделения и очистки продукта. Всё это свидетельствует о том, что периодические процессы в бу­дущем будут применяться.

Дата добавления: 2016-05-11 ; просмотров: 6436 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Оцените статью
Разные способы