- Производство и передача переменного электрического тока
- Получение и передача переменного тока. Трансформатор
- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Сравнение способов передачи энергии с помощью постоянного и переменного тока
- Какие существуют виды передачи энергии по проводам
- Передача энергии постоянного тока
- Передача энергии переменного тока
Производство и передача переменного электрического тока
Переменным током называется ток, величина и направление которого периодически меняются. Именно благодаря переменному току в наших домах сегодня есть свет и тепло. Только благодаря переменному току работают все промышленные предприятия и производства нашего времени. Не будь переменного тока, технологический прогресс современной цивилизации был бы попросту невозможен.
Для получения переменного тока используются электромеханические устройства, называемые индукционными генераторами. В них получаемая тем или иным способом механическая энергия передается ротору, ротор вращается, в результате механическая энергия вращения ротора преобразуется в электрическую энергию посредством электромагнитной индукции.
Напомним, что если вращать магнит внутри проводящей рамки, то в рамке будет индуцироваться переменный ток. На этом принципе и работает генератор. Только в промышленном генераторе роль рамки играет статор, а роль магнита — ротор с намагничивающей обмоткой, по сути — вращающийся электромагнит.
В промышленном генераторе статор представляет собой огромную стальную конструкцию в виде кольца с пазами на его внутренней стороне. В эти пазы уложена медная трехфазная обмотка. Магнитное поле, как мы уже сказали, создается ротором, который представляет собой стальной сердечник с парой (или с несколькими парами, в зависимости от номинальной скорости вращения ротора) полюсов, формируемых током обмотки ротора. Постоянный ток подается к обмотке ротора от возбудителя.
По принципиальной схеме двухполюсного индукционного генератора переменного тока легко понять, что силовые линии магнитного поля ротора пересекают витки обмотки статора, при этом один раз за один оборот магнитный поток ротора изменяет свое направление по отношению к одним и тем же виткам статора.
Таким образом в обмотке статора получается именно переменный ток, а не пульсирующий постоянный. Если речь идет об атомной электростанции, то механическое вращение ротор генератора получает от пара, который под огромным давлением подается на лопасти турбины сопряженной с ротором. Пар на атомной электростанции получается из воды, которая разогревается теплом от ядерной реакции, подводимым к воде через теплообменник.
В России частота переменного тока в сети равна 50 Гц, это значит, что ротору двухполюсного генератора необходимо совершить 50 оборотов за секунду. Так, на атомной электростанции ротор совершает 3000 оборотов в минуту, что как раз и дает частоту генерируемого тока в 50 Гц. Направление генерируемого тока изменяется по синусоидальному (гармоническому) закону.
Обмотка генератора разделена на три части, поэтому переменный ток получается трехфазным. Это значит, что в каждой из трех частей обмотки статора получаемые ЭДС смещены по фазе относительно друг друга на 120 градусов. Действующее значение генерируемого на электростанции напряжения может быть от 6,3 до 36,75 кВ, в зависимости от вида генератора.
Чтобы передать электрическую энергию на большое расстояние, используются высоковольтные линии электропередач (ЛЭП). Но если электричество передавать без преобразования, при том же напряжении какое выходит с генератора, то потери энергии при передаче окажутся колоссальными, и до конечного потребителя практически ничего не дойдет.
Дело в том, что потери энергии в передающих проводах пропорциональны квадрату величины тока и прямо пропорциональны сопротивлению проводов (см. Закон Джоуля-Ленца). Значит для более эффективной передачи и распределения электроэнергии, напряжение необходимо сначала в несколько раз повысить, чтобы во столько же раз уменьшился ток и следовательно сильно сократились транспортные потери. И только повышенное напряжение имеет смысл передавать на ЛЭП.
Поэтому электричество от электростанции сначала подается на трансформаторную подстанцию. Здесь напряжение повышается до 110-750 кВ и только после — подается на провода ЛЭП. Но потребителю необходимо 220 или 380 вольт, поэтому в конце линии высокое напряжение обратно понижают, при помощи опять же трансформаторных подстанций, до 6-35 кВ.
На подстанции вблизи нашего дома или встроенной в дом, установлен трансформатор. Здесь напряжение снова понижается — от 6-35кВ до 220 (380) вольт, которые уже раздаются потребителям. Через вводно-распределительное устройство в разные помещения расходится сеть проводов и кабелей.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Получение и передача переменного тока. Трансформатор
Переменный ток – это электрический ток, меняющийся во времени периодически по модулю и направлению.
На практике это в подавляющем большинстве случаев означает, что зависимость тока от времени будет представлять из себя синусоиду. Например, напряжение в розетке вполне синусоидальное с частотой 50 Гц и амплитудой 311 В, как бы неожиданно это не звучало.
Для получения такого напряжения сейчас используют электромеханические индукционные генераторы.
Принцип действия генератора переменного тока основан на вращении магнита внутри контура. При этом вращающаяся часть называется ротором, а неподвижная – статором.
Ниже показана схема реального электрогенератора – на неё видны магнит (ротор), общий сердечник катушек, сами катушки (статор). Такой генератор называется трёхфазным и он представляет из себя сразу три источника напряжения – так уж вышло, что на практике проще сделать генератор, являющийся сразу тремя источниками, чем генератор, который был бы одним источником аналогичной мощности.
Когда ротор вращается, магнитный поток в катушках меняется – чтобы это увидеть, достаточно взглянуть на линии магнитного поля.
Когда полюс направлен на обмотку, в ней поток околонулевой, когда обмотка сбоку от полюса, в ней поток максимальный.
Обычно на электростанциях генератор вращает турбина – паровая или водяная. В автомобиле генератор вращает поршневой двигатель.
Изобретение переменного тока в своё время было большим достижением. Дело в том, что переменный ток легко передавать на большие расстояния. Большое расстояние предполагает, что мы передаём ток по длинному проводу, а значит, сопротивление велико. Тепловые потери равны Q = I 2 * R * t, а передаваемая энергия равна E = U * I * t, то есть если мы хотим передавать такую же энергию, как и раньше, но с меньшими потерями, нам надо или уменьшать сопротивление проводов (что очень дорого), или увеличивать передаваемое напряжение при уменьшении тока.
Если увеличить напряжение, это приведёт к тому, что на розетке будет написано на 220 В, а 10000 В, например, и изоляция будет толщиной с садовый шланг, и любое короткое замыкание будет выглядеть вот так:
Все эти проблемы легко решаются переменным током, потому что его можно передавать на дальние расстояния с огромным напряжением, а затем понижать напряжение и передавать в дома уже безопасным способом.
Ключевые слова здесь – можно понижать напряжение.
Для этой задачи у нас есть трансформаторы. Трансформатор устроен следующим образом:
Протекающий в первичной обмотке ток создаёт магнитное поле в сердечнике (переменное магнитное поле, так как ток переменный), это магнитное поле создаёт переменный ток во вторичной обмотке, потому что изменение магнитного потока порождает ток самоиндукции.
Фишка трансформатора в том, что индуктивность обмоток разная – и значит, напряжение на них тоже будет разным.
Напряжения на обмотках соотносятся по формуле:
U1 / U2 = N1 / N2, где N – число витков в соответствующей обмотке.
Передача переменного тока от электростанции до дома происходит по следующей схеме: вначале генератор производит напряжение порядка 25 кВ, затем это напряжение повышается трансформатором до примерно 750 кВ, передаётся на ЛЭП, а затем на подстанции оно понижается до 220 В (ну, амплитуда 311 В, но среднее значение всё же 220 В, а лампочка светится пропорционально среднему значению, а не максимальному), и дальше мы им пользуемся.
Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание
Добавить интересную новость
Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников
user->isGuest) < echo (Html::a('Войдите', ['/user/security/login'], ['class' =>»]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else < if(!empty(\Yii::$app->user->identity->profile->first_name) || !empty(\Yii::$app->user->identity->profile->surname))< $name = \Yii::$app->user->identity->profile->first_name . ‘ ‘ . \Yii::$app->user->identity->profile->surname; > else < $name = ''; >echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>
При правильном ответе Вы получите 1 балл
У Вовы вышел из строя блок питания для телефона. Вова вскрыл его и увидел, что у трансформатора перегорела первая обмотка. Вова прочитал документацию на телефон и понял, что тот потребляет напряжение 5.5 В.
Сколько витков надо сделать на первой обмотке, если на второй их 50, а напряжение в сети 220 В?
Выберите всего один правильный ответ.
Добавление комментариев доступно только зарегистрированным пользователям
Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.
28.01.17 / 22:14, Иван ИвановичОтветить -2
Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Источник
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Сравнение способов передачи энергии с помощью постоянного и переменного тока
Какие существуют виды передачи энергии по проводам
Электрическая энергия может передаваться как с помощью систем постоянного тока, так и с помощью систем переменного тока. Но есть некоторые преимущества и недостатки обеих систем.
Поэтому в данном материале мы обсудим технические преимущества и недостатки как систем переменного тока, так и систем постоянного тока.
Передача энергии постоянного тока
Некоторое время назад передача электроэнергии осуществлялась постоянным током из-за следующих преимуществ.
- При передаче постоянного тока используются два провода, а для передачи переменного тока, как правило, требуются три проводника.
- В передаче постоянного тока нет индуктивности и скачков (волны высокого напряжения в течение очень короткого времени).
- Из-за отсутствия индуктивности происходит очень низкое падение напряжения в линиях передачи постоянного тока по сравнению с переменным током (если нагрузка и конечное передаваемое напряжение передачи).
- Система постоянного тока имеет меньший потенциал напряжения в системе переменного тока для такого же уровня напряжения. Поэтому линия постоянного тока требует меньшей изоляции.
- Для DC-систем требуется проводник небольшой площади поперечного сечения.
- В системе постоянного тока нет помех относительно систем связи.
- В высоковольтных линиях постоянного тока DC отсутствуют диэлектрические потери.
- В системе передачи постоянного тока нет проблем с синхронизацией и стабильностью.
- В системе постоянного тока диапазон регулирования скорости больше, чем в системе переменного тока.
- В системе питания постоянного тока потери в оболочке подземных кабелей низки.
- Система постоянного тока больше подходит для высокомощной передачи за счет высокого значения тока.
Но есть и недостатки систем постоянного тока.
- Из-за коммутационных проблем электрическая энергия не может производиться при высоком постоянном напряжении.
- Для передачи высокого напряжения мы не можем изменять уровень напряжения постоянного тока (поскольку трансформатор не может работать на постоянном токе).
- Существует предел DC-переключателей и автоматических выключателей (к тому же они дорогостоящие).
- Мотор-генераторный агрегат используется для снижения уровня напряжения постоянного тока, а КПД мотор-генератора ниже, чем трансформатора.
- Уровень напряжения постоянного тока не может быть легко изменен. Таким образом, мы не можем получить желаемое напряжение для электрических и электронных приборов (например, 5 вольт, 9 вольт 15 вольт, 20 и 22 вольта и т. д.) непосредственно из системы передачи.
Передача энергии переменного тока
Из-за перечисленных выше недостатков систем постоянного тока на сегодняшний день распространена передача энергии посредством переменного тока, которая имеет приведенные ниже преимущества.
- Позволяет передавать энергию дальше, если затраты на оборудование подстанций схожи.
- Уровень напряжения переменного тока может быть легко увеличен или уменьшен благодаря повышающим напряжение и понижающим трансформаторам.
- Автоматические выключатели переменного тока дешевле, чем автоматические выключатели постоянного тока.
- Ремонт и обслуживание подстанций переменного тока легче и дешевле, чем подстанций постоянного тока.
Впрочем, есть и недостатки таких систем.
- В линии переменного тока размер проводника больше, чем в линии постоянного тока.
- Потери в системе переменного тока больше.
- В линиях переменного тока имеется емкость, поэтому наблюдается постоянная потеря мощности при отсутствии нагрузки на линии или при разрыве линии.
- Требуется дополнительная изоляция в системе переменного тока.
- Наблюдается влияние систем связи.
Вследствие «войны токов» победила в конечном счете сторона, продвигавшая идеи передачи энергии за счет переменного тока. Впрочем, некоторые недостатки систем постоянного тока устраняет современная электроника. Так, в настоящее время можно повысить или понизить уровень напряжения постоянного тока с помощью чоперов и бустеров. Также в некоторой степени устранены проблемы коммутации, и для этой цели мы можем использовать выпрямительные блоки. Сегодня системы постоянного тока также находят использование, но в основном в локальных областях для передачи энергии от альтернативных источников (солнечных и ветряных электростанций).
Источник