Передвижение реактивным способом это

БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе. Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки, предприимчивая личинка стрекозы-коромысла, восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе 😉

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи, функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м). Большинство медуз двигаются реактивным способом, выталкивая воду из полости зонтика.

Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги, обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида: Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки, обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения, они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством, морская звезда обхватывает его своими руками, вскрывает раковину и поедает…

Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла, или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса. Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения, личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени, необходима повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель. Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна. В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с. А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм. Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч.

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает, – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой».

Читайте также:  Как повысить иммунитет все способы

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м, включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м).

Реактивный двигатель кальмара

Реактивное движение, используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам. Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров. Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу 😉

В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель. Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты, в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б).

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя.

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен, благодаря чему он может достигать скорости 70 км/ч; некоторые исследователи считают, что даже 150 км/ч!

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара: это водомёт, действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя, подобного воздушно-реактивному

Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист, кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР, в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии, автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных».

Материалы этой статьи полезно будет применить не только на уроках физики и биологии, но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики
Москва: издательство «Просвещение», 1988
§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Источник

Водное передвижение — Aquatic locomotion

Водное передвижение — это биологически продвинутое движение в жидкой среде. Простейшие двигательные системы состоят из ресничек и жгутиков . Плавание несколько раз эволюционировало у ряда организмов, включая членистоногих , рыб , моллюсков , рептилий , птиц и млекопитающих .

Читайте также:  Как самым простым способом солить капусту

СОДЕРЖАНИЕ

Эволюция плавания

Плавание несколько раз развивалось по разным линиям. Предполагаемые окаменелости медуз встречаются в Эдиакарах , но первые свободно плавающие животные появляются в раннем и среднем кембрии . Они в основном связаны с членистоногими и включают аномалокаридид , которые плавают с помощью боковых долей, как современные каракатицы . Головоногие моллюски пополнили ряды нектонов в конце кембрия, а хордовые, вероятно, поплыли из раннего кембрия. Многие наземные животные сохраняют некоторую способность плавать, однако некоторые из них вернулись в воду и развили способность к водному перемещению. Однако большинство обезьян (включая людей) утратили инстинкт плавания .

В 2013 году Педро Ренато Бендер, научный сотрудник Института эволюции человека Университета Витватерсранда , предложил теорию, объясняющую потерю этого инстинкта. Названная гипотезой последнего общего предка Сачи (в честь Сачи , бразильского фольклорного персонажа, который не может преодолевать водные преграды), она утверждает, что потеря инстинктивной способности к плаванию у обезьян лучше всего объясняется ограничениями, связанными с адаптацией к древесной жизни у обезьян. последний общий предок обезьян. Бендер выдвинул гипотезу, что древние обезьяны все чаще избегали глубоководных водоемов, когда риск контакта с водой был явно выше, чем преимущества пересечения их. Уменьшение контакта с водоемами могло привести к исчезновению инстинкта собачьего весла .

Микроорганизмы

Бактериальный

Инфузории

Инфузории используют маленькие жгутики, называемые ресничками, для передвижения по воде. Одна инфузория обычно имеет от сотен до тысяч ресничек, которые плотно упакованы вместе в массивы. Во время движения отдельная ресничка деформируется, используя рабочий ход с высоким коэффициентом трения, за которым следует ход восстановления с низким коэффициентом трения. Поскольку на индивидуальном организме имеется множество ресничек, упакованных вместе, они демонстрируют коллективное поведение в метахрональном ритме . Это означает, что деформация одной реснички находится в фазе с деформацией ее соседки, вызывая волны деформации, которые распространяются по поверхности организма. Эти распространяющиеся волны ресничек позволяют организму скоординированно использовать реснички для движения. Типичным примером ресничного микроорганизма является Paramecium , одноклеточное мерцательное простейшее, покрытое тысячами ресничек. Биение ресничек позволяет парамециуму перемещаться по воде со скоростью 500 микрометров в секунду.

Жгутиковые

У некоторых организмов, таких как бактерии и сперма животных, есть жгутики, которые научились перемещаться в жидкой среде. Модель вращающегося двигателя показывает, что бактерии используют протоны электрохимического градиента для перемещения своих жгутиков. Крутящий момент в жгутике бактерий создается частицами, которые проводят протоны вокруг основания жгутика. Направление вращения жгутиков у бактерий определяется заполнением протонных каналов по периметру мотора жгутика.

Движение сперматозоидов называется подвижностью сперматозоидов . Середина сперматозоида млекопитающих содержит митохондрии, которые обеспечивают движение жгутика сперматозоидов. Двигатель вокруг основания создает крутящий момент, как у бактерий, движущихся в водной среде.

Псевдоподии

Движение с помощью псевдопода осуществляется за счет увеличения давления в одной точке на клеточной мембране . Это повышение давления является результатом полимеризации актина между корой и мембраной. По мере увеличения давления клеточная мембрана выталкивается наружу, образуя псевдопод. Когда ложноножка движется наружу, остальная часть тела тянется вперед за счет коркового напряжения. В результате клетки перемещаются в жидкой среде. Кроме того, направление движения определяется хемотаксисом . Когда хемоаттракция происходит в определенной области клеточной мембраны , полимеризация актина может начаться и переместить клетку в этом направлении. Прекрасным примером организма, использующего псевдоножки, является Naegleria fowleri .

Беспозвоночные

У лучников , медуз и их сородичей основной способ плавания — сгибание чашеобразного тела. Все медузы плавают свободно, хотя многие из них проводят большую часть времени в пассивном плавании. Пассивное плавание сродни скольжению; организм плавает, используя токи там, где это возможно, и не прилагает никакой энергии для управления своим положением или движением. Напротив, активное плавание требует затрат энергии на путешествие в желаемое место.

В билатерии существует множество способов плавания. В стрелках червей ( Chaetognatha ) волнистые их ребристое тело, а не в отличии от рыбы. Нематоды плавают волнообразными движениями тела без плавников. Некоторые группы членистоногих могут плавать, в том числе многие ракообразные . Большинство ракообразных, например креветки , обычно плавают на специальных плавательных ногах ( плеоподах ). Плавательные крабы плавают на модифицированных ходильных ногах ( переоподах ). Ракообразное дафния плавает, взмахивая усами.

Также существует ряд форм плавающих моллюсков . Многие свободно плавающие морские слизни , такие как морские ангелы , имеют структуры, напоминающие плавники. Некоторые моллюски с раковиной, такие как гребешки, могут ненадолго плавать, хлопая обеими раковинами, открывая и закрывая их. Моллюски, наиболее приспособленные для плавания, — это головоногие моллюски . Фиолетовые морские улитки используют плавучий плот из пенопласта, стабилизированный амфифильными муцинами, чтобы плавать на поверхности моря.

Читайте также:  Рекомендуемым способом снятия стресса является тест с ответами

Среди Deuterostomia есть и несколько пловцов. Перья звезды могут плавать, раскачивая свои многочисленные руки. Beautiful Swim Feather Star en MSN Video . Сальпы движутся, прокачивая воду через свои студенистые тела. Наиболее развитые для плавания deuterostomes встречаются у позвоночных , особенно у рыб .

Реактивный двигатель

Реактивное движение — это метод передвижения в воде, при котором животные заполняют мышечную полость и выбрасывают воду, чтобы заставить их двигаться в направлении, противоположном струе воды. Большинство организмов оснащено одним из двух вариантов реактивного движения; они могут втягивать воду сзади и выталкивать ее сзади, например, медузы, или втягивать воду спереди и выталкивать ее сзади, например, сальпы. Заполнение полости вызывает увеличение массы и сопротивления животного. Из-за большой сужающейся полости скорость животного колеблется при движении по воде, ускоряясь при выталкивании воды и замедляясь при всасывании воды пылесосом. Несмотря на то, что этими колебаниями сопротивления и массы можно пренебречь, если частота циклов реактивного движения достаточно высока, реактивное движение является относительно неэффективным методом передвижения в воде.

Все головоногие моллюски могут двигаться за счет реактивного движения , но это очень энергоемкий способ передвижения по сравнению с хвостовым движением, используемым рыбами. Относительная эффективность реактивного движения снижается по мере увеличения размера животного. Со времен палеозоя, когда конкуренция с рыбой создавала среду, в которой эффективное движение было решающим для выживания, реактивное движение отошло на второй план, а плавники и щупальца использовались для поддержания постоянной скорости. Тем не менее, стоп-старт, обеспечиваемый реактивными двигателями, по-прежнему полезен для обеспечения высокоскоростных всплесков — не в последнюю очередь при поимке добычи или избегании хищников. Действительно, это делает головоногих моллюсков самыми быстрыми морскими беспозвоночными, и они могут обогнать большинство рыб. Кислородная вода попадает в полость мантии к жабрам, и в результате мышечного сокращения этой полости отработанная вода выбрасывается через гипоном , образованный складкой в ​​мантии. Движение головоногих моллюсков обычно назад, поскольку вода вытесняется вперед через гипоном, но направление можно в некоторой степени контролировать, направляя его в разные стороны. Большинство головоногих моллюсков плавают (т.е. обладают нейтральной плавучестью ), поэтому им не нужно плавать, чтобы оставаться на плаву. Кальмары плавают медленнее, чем рыбы, но используют больше энергии для увеличения скорости. Снижение эффективности связано с количеством воды, которое кальмар может ускорить из своей мантии.

Медузы используют одностороннюю конструкцию водной полости, которая генерирует фазу непрерывных циклов реактивного движения, за которой следует фаза покоя. Эффективность Фруда составляет около 0,09, что указывает на очень дорогостоящий метод передвижения. Метаболические затраты на транспортировку медузы высоки по сравнению с рыбой такой же массы.

Другие реактивные животные имеют аналогичные проблемы с эффективностью. Морские гребешки , похожие на медузы, плавают, быстро открывая и закрывая свои раковины, которые втягивают воду и выталкивают ее со всех сторон. Это движение используется как средство спасения от хищников, таких как морские звезды . Впоследствии раковина действует как судно на подводных крыльях, противодействуя тенденции морского гребешка тонуть. Эффективность Фруда для этого типа движения низкая, около 0,3, поэтому он используется в качестве механизма аварийного спасения от хищников. Однако объем работы, выполняемой гребешком, снижается за счет эластичного шарнира, соединяющего две раковины двустворчатого моллюска. Кальмары плавают, втягивая воду в полость своей мантии и выталкивая ее через сифон. Эффективность их водометной двигательной установки по Фруду составляет около 0,29, что намного ниже, чем у рыбы той же массы.

Большая часть работы, выполняемой мышцами морского гребешка для закрытия его оболочки, сохраняется в виде упругой энергии в ткани абдуктина, которая действует как пружина, открывающая оболочку. Эластичность приводит к тому, что работа, выполняемая против воды, становится низкой из-за больших отверстий, в которые должна входить вода, и маленьких отверстий, которые должна оставлять вода. Инерционная работа водометного движителя также невелика. Из-за низкой инерционной работы экономия энергии, создаваемая эластичной тканью, настолько мала, что ею можно пренебречь. Медузы также могут использовать свою эластичную мезоглею, чтобы увеличить свой колокол. Их мантия содержит слой мышц, зажатый между эластичными волокнами. Мышечные волокна проходят вокруг раструба по окружности, в то время как эластичные волокна проходят через мышцу и по бокам раструба, чтобы предотвратить удлинение. После однократного сокращения колокол пассивно вибрирует на резонансной частоте, наполняя колокол. Однако, в отличие от гребешков, инерционная работа похожа на гидродинамическую из-за того, как медузы выталкивают воду через большое отверстие с низкой скоростью. Из-за этого отрицательное давление, создаваемое вибрирующей полостью, ниже положительного давления струи, а это означает, что инерционная работа мантии мала. Таким образом, реактивный двигатель показан как неэффективный способ плавания.

Источник

Оцените статью
Разные способы