Все возможные способы задания плоскости в пространстве представлены в следующей таблице.
Фигура
Рисунок
Тип утверждения и формулировка
Три различные точки
Аксиома о плоскости, заданной тремя точками.
Через три различные точки в пространстве проходит одна и только одна плоскость.
Прямая линия и точка, не лежащая на этой прямой
Теорема о плоскости, определяемой прямой и точкой.
Через прямую и точку, не лежащую на этой прямой, проходит одна и только одна плоскость.
Две пересекающиеся прямые
Теорема о плоскости, определяемой двумя пересекающимися прямыми.
Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Две параллельные прямые
Теорема о плоскости, определяемой двумя параллельными прямыми.
Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Аксиома о плоскости, заданной тремя точками.
Через три различные точки в пространстве проходит одна и только одна плоскость.
Прямая линия и точка, не лежащая на этой прямой
Теорема о плоскости, определяемой прямой и точкой.
Через прямую и точку, не лежащую на этой прямой, проходит одна и только одна плоскость.
Теорема о плоскости, определяемой двумя пересекающимися прямыми.
Через две пересекающиеся прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Теорема о плоскости, определяемой двумя параллельными прямыми.
Через две параллельные прямые проходит одна и только одна плоскость, содержащая обе эти прямые.
Утверждение . Через любую прямую в пространстве проходит бесконечно много плоскостей (рис.5).
Замечание . Через любые две скрещивающиеся прямые скрещивающиеся прямые не проходит ни одной плоскости.
Источник
Лекция 3. Плоскость. Способы ее задания, положение относительно плоскостей проекций
Плоскость. Способы ее задания, положение относительно плоскостей проекций
Положение плоскости в пространстве может быть однозначно определено:
1) тремя точками, не лежащими на одной прямой (рис. 2.20 а);
2) прямой и точкой, не лежащей на этой прямой (рис. 2.20 б);
3) двумя параллельными прямыми (рис. 2.20 в);
4) двумя пересекающимися прямыми (рис. 2.20 г);
5) плоской фигурой (рис. 2.20 д);
6) следом плоскости (рис. 2.20 е).
На КЧ плоскость задается проекциями этих элементов, но не ограничивается ими, т.к. она безгранична и бесконечна.
Всегда от одного способа задания плоскостей можно перейти к другому. Например, соединив между собой точки А, В и С отрезками прямых линий, можно получить плоскость, заданную треугольником (рис. 2.20 а, д).
След плоскости– это линия пересечения заданной плоскости с одной из плоскостей проекций.
Соответственно различают горизонтальный, фронтальный и профильный следы плоскости.
Задание плоскости следами дает наиболее наглядное представление о положении плоскости в пространстве.
В системе двух плоскостей проекций плоскость в общем случае имеет два следа (рис. 2.21 а, б). Точки пересечения двух следов на оси проекций называются точками схода следов. Для упрощения решения задач на практике обычно переходят от такого способа задания плоскости к заданию ее двумя пересекающимися прямыми нулевого уровня[2]: горизонталью, лежащей в горизонтальной плоскости проекций и совпадающей с горизонтальным следом плоскости , и фронталью, располагающейся во фронтальной плоскости проекций и совпадающей с фронтальным следом плоскости (рис.2.21 а, в).
Классификация плоскостей относительно плоскостей проекций аналогична классификации прямых: плоскости относительно плоскостей проекций могут занимать общее или частное положение.
Плоскостью общего положения называется плоскость не параллельная и не перпендикулярная ни одной из плоскостей проекций.
Плоскость общего положения пересекает все плоскости проекций (рис. 2.21).[3]
Признаки и свойства плоскости общего положения:
1) Следы плоскости общего положения не параллельны и не перпендикулярны ни одной из осей проекций.
2) Любой плоский геометрический объект (отрезок или фигура), лежащий в плоскости, проецируется на любую из плоскостей проекций с искажением.
Плоскостями частного положения относительно плоскостей проекций называются плоскости параллельные или перпендикулярные им.
Плоскость, перпендикулярная одной из плоскостей проекций, называется проецирующей плоскостью.
Существует три вида проецирующих плоскостей: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая плоскости. Такие плоскости вырождаются в прямую линию (след проекций) на ту плоскость проекций, к которой они перпендикулярны.
Признаки и свойства горизонтально-проецирующей плоскости:
1) горизонтальный след плоскости располагается наклонно к осям проекций 0x и 0y и определяет углы наклона этой плоскости к фронтальной () и профильной () плоскостям проекций;
2) горизонтальные проекции всех точек, прямых и плоских фигур, лежащих в горизонтально-проецирующей плоскости, находятся на ее горизонтальном следе , его называют следом проекций.
Признаки и свойства фронтально-проецирующей плоскости:
1) фронтальный след плоскости располагается наклонно к осям проекций 0x и 0z и определяет углы наклона этой плоскости к горизонтальной () и профильной () плоскостям проекций;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих во фронтально-проецирующей плоскости, находятся на ее фронтальном следе .
Признаки и свойства профильно-проецирующей плоскости:
1) горизонтальный и фронтальный следы плоскости располагаются параллельно оси проекций 0x, а профильный след наклонен к осям 0y’ и 0z. Он определяет углы наклона этой плоскости к фронтальной () и горизонтальной () плоскостям проекций;
2) профильные проекции всех точек, прямых и плоских фигур, лежащих в профильно-проецирующей плоскости, находятся на ее профильном следе.
Плоскость, параллельная одной из плоскостей проекций, называется плоскостью уровня.
Все точки этой плоскости одинаково удалены от той плоскости проекций, к которой она параллельна. Любой отрезок или плоская фигура, лежащие в плоскости уровня, проецируются без искажения на параллельную ей плоскость проекций.
Существует три вида плоскостей уровня: горизонтальная, фронтальная и профильная плоскости уровня.
Плоскости уровня пересекают только две плоскости проекций, поэтому, в отличие от ранее рассмотренных плоскостей, имеют только два следа.
1) фронтальный и профильный следы плоскости располагаются параллельно осям проекций 0x и 0y соответственно;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих в горизонтальной плоскости, находятся на ее фронтальном следе, профильные проекции – на профильном;
3) горизонтальные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
1) горизонтальный и профильный следы плоскости располагаются параллельно осям проекций 0x и 0z соответственно;
2) горизонтальные проекции всех точек, прямых и плоских фигур, лежащих во фронтальной плоскости, находятся на ее горизонтальном следе, профильные проекции – на профильном;
3) фронтальные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
1) фронтальный и горизонтальный следы плоскости располагаются параллельно осям проекций 0z и 0y соответственно;
2) фронтальные проекции всех точек, прямых и плоских фигур, лежащих в профильной плоскости, находятся на ее фронтальном следе, горизонтальные проекции – на горизонтальном;
3) профильные проекции плоских фигур, лежащих в плоскости, равны их натуральным величинам.
Источник
Чертежи и 3d визуализация по России!
Положение плоскости в пространстве определяется: а) тремя точками, не лежащими на одной прямой линий, рис.1 б) прямой и точкой, взятой вне прямой, рис.2 в) двумя пересекающимися прямыми, рис.3 г) двумя параллельными прямыми. рис.4
Каждое из представленных на рис. 1— 4 заданий плоскости может быть преобразовано в другое из них. Например, проведя через точки А и В (рис. 1) прямую, мы получим задание плоскости, представленное на рис. 2: от него мы можем пе¬рейти к рис. 4, если через точку С проведем прямую, параллельную прямой АВ.
рис.1 рис.2 рис.3 рис.4
Важное замечание! Многие студенты, изучающие начертательную геометрию или инженерную графику , сталкиваются с проблемой: вроде бы читаешь текст в учебнике, а все равно не понимаешь темы! Одна из причин этого – это то, что человек не мыслит образно. В чем заключается этот метод образного мышления? Да все просто, читая текст, представляйте себе «картинку» объекта (сцены). Ну, например, читая слово плоскость или прямая, кто вам мешает плоскость представить в виде ровного куска стекла (рис.5), а прямую как очень тонкую трубу без изгибов! И таких примеров можно привести миллион. Используя метод образного мышления, вы сможете не только научиться правильно решать задачи по начертательной геометрии или инженерной графике, но и ускорять процесс работы! Например, вам нужно построить по двум видам (вид спереди и сверху) аксонометрию детали. Используя метод образного мышления, вы представляете себе будущий объем детали, понимаете, что часть невидимых линий совершенно не обязательно простраивать (рис.6). В данном случае достаточно просто показать те линии, которые будут видны! Тем самым вы раза в полтора ускоряете свою работу – это очень помогает на экзаменах, когда вы делаете работу не только за себя, но и за друга – балбеса ).