- § 23. Электромагниты
- 1. Что такое соленоид?
- 2. Сформулируйте второе правило правой руки.
- 3. Перечислите способы усиления магнитного действия катушки с током.
- 4. Что называют электромагнитом?
- 5. Для каких целей используют электромагниты на заводах?
- 6. Как работает магнитный сепаратор зерна?
- 7. Объясните, как действует электрический звонок.
- 8. Для чего используется электромагнитное реле? Как оно действует?
- 9. Чему была равна масса груза, удерживаемого первым дугообразным электромагнитом Стерджена?
- Вопросы § 59
- Физика А.В. Перышкин
- Магнитное поле проводника с током и способы его усиления.
- Магнитное поле катушки с током. Электромагниты и их применение
- Урок 58. Физика 8 класс
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Магнитное поле катушки с током. Электромагниты и их применение»
§ 23. Электромагниты
1. Что такое соленоид?
1. Катушка из провода с электрическим током.
2. Сформулируйте второе правило правой руки.
2. Если обхватить соленоид правой рукой так, чтобы четыре пальца показывали направление тока, то большой палец укажет направление магнитных линий внутри соленоида.
3. Перечислите способы усиления магнитного действия катушки с током.
3. Увеличить ток, увеличить количество витков, вставить железный сердечник.
4. Что называют электромагнитом?
4. Соленоид с железным сердечником.
5. Для каких целей используют электромагниты на заводах?
5. Для перемещения тяжелых железных изделий.
6. Как работает магнитный сепаратор зерна?
6. Электромагнит отделяет мелкие железные опилки с прилипшими зернами сорняков от гладких зерен.
7. Объясните, как действует электрический звонок.
7. Электромагнит притягивает якорь, он ударяет по чашечке, цепь размыкается, якорь возвращается в исходное положение, цепь замыкается, процесс повторяется.
8. Для чего используется электромагнитное реле? Как оно действует?
8. Для включения мощных электротехнических устройств. При замыкании цепи катушки электромагнит притягивает якорь, который замыкает контакты рабочей цепи.
9. Чему была равна масса груза, удерживаемого первым дугообразным электромагнитом Стерджена?
Решебник по физике за 9 класс (С.В.Громов, Н.А.Родина, 2000 год),
задача №23
к главе «Ответы на вопросы. Глава 2. Электромагнитные явления».
Источник
Вопросы § 59
Физика А.В. Перышкин
1. В каком направлении устанавливается катушка с током, подвешенная на длинных тонких проводниках? Какое сходство имеется у неё с магнитной стрелкой?
Если катушку с током подвесить на тонких и гибких проводниках, то она установится так же, как магнитная стрелка компаса. Один конец катушки будет обращен к северу, другой к югу. Значит, катушка с током, как и магнитная стрелка, имеет два полюса — северный и южный.
2. Какими способами можно усилить магнитное действие катушки с током?
Усилить магнитное действие катушки током можно:
1) увеличив число витков в катушке;
2) увеличив силу тока;
3) введя железо внутрь катушки.
3. Что называют электромагнитом?
Электромагнит — катушка с железным сердечником внутри.
4. Для каких целей используют на заводах электромагниты?
Электромагниты, обладающие большой подъемной силой, используют на заводах для переноски изделий из стали или чугуна, а также стальных и чугунных стружек, слитков.
5. Как устроен магнитный сепаратор для зерна?
В зерно подмешивают очень маленькие железные опилки. Эти опилки не прилипают к гладким зернам, полезных злаков, но прилипают к зернам сорняков. Зерна высыпаются из бункера на вращающийся барабан. Внутри барабана находится сильный электромагнит. Притягивая железные части — он извлекает зерна сорняков из потока зерна и таким путем очищает зерно от сорняков и случайно попавших железных предметов.
Источник
Магнитное поле проводника с током и способы его усиления.
При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 26). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.
|
Направление магнитных силовых линий можно определить по правилу буравчика. Если поступательное движение буравчика (рис. 27) совместить с направлением тока в проводнике, то вращение его рукоятки укажет направление силовых линий магнитного поля вокруг проводника. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.
По мере удаления от проводника магнитные силовые линии располагаются реже.
Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.
При проводнике, согнутом в виде витка (рис. 28,а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 28,б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток,
проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.
Катушка, обтекаемая током, представляет собой искусственный электрический магнит. Для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.
| |
Определить направление магнитного поля, создаваемого витком или катушкой, можно также с помощью правой руки (рис.29) и буравчика (рис. 30).
|
|
18. Магнитные свойства различных веществ.
Все вещества в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.
К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью µихорошо притягиваются к магнитам и электромагнитам.
К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Парамагнитные материалы притягиваются к магнитам и электромагнитам во много раз слабее, чем ферромагнитные материалы.
Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр.
Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок.
Кривая намагничивания. Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания (рис. 31), которая представляет собой зависимость индукции В от напряженности Н магнитного поля (от намагничивающего тока I).
Кривую намагничивания можно разбить на три участка: О-а, на котором магнитная индукция возрастает почти пропорционально намагничивающему току; а-б, на котором рост магнитной индукции замедляется, и участок магнитного насыщения за точкой б, где
зависимость В от Н становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля.
Перемагничивание ферромагнитных материалов, петля гистерезиса. Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 32 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I. Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в), будет больше индукции, полученной при намагничивании (участки О-а и д-а). Когда намагничивающий ток будет доведен до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение Вr, соответствующее отрезку О-б. Это значение называется остаточной индукцией.
Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока — остаточным магнетизмом.
При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Нс, при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а, получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания. Кривую изменения индукции называют петлей гистерезиса.
Влияние ферромагнитных материалов на распределение магнитного поля. Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т. е. индукция магнитного поля внутри тела и вблизи него возрастает. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 33) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.
Дата добавления: 2015-03-26 ; просмотров: 1869 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Магнитное поле катушки с током. Электромагниты и их применение
Урок 58. Физика 8 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Магнитное поле катушки с током. Электромагниты и их применение»
Катушка представляет собой проволоку, намотанную на неметаллический каркас.
Как правило, катушка обладает большим числом витков, при этом витки расположены вплотную друг к другу. Таким образом, проходя через проволоку, ток будет идти по спирали. Если такую катушку подвесить на гибких проводах, то она будет вести себя, как магнитная стрелка. Значит, у катушки с током тоже есть магнитные полюса.
Как мы помним из предыдущего урока, магнитные линии направлены от южного полюса к северному. Тогда, получается, что катушка с током будет фактически являться магнитом. То есть, при прохождении тока через витки, внутри катушки образуется однородное магнитное поле.
Обратите внимание, насколько это явление похоже на возникновение магнитного поля вокруг проводника.
Мы видим полностью симметричную картину: в одном случае, вокруг прямого тока образуются круговые магнитные линии, а в другом — вокруг прямых магнитных линий идут витки электрического тока. Это ещё раз доказывает то, что электрические и магнитные явления неделимы.
Итак, катушка с током, фактически имеет свойства полосового магнита. Совсем недавно мы говорили, что магниты обладают полями разной силы. Так вот, было многократно подтверждено опытами, что катушка с бо́льшим числом витков имеет более сильное магнитное поле.
И, конечно, сила магнитного поля зависит от силы тока в проводнике.
Если мы будем изменять силу тока в катушке, то убедимся, что её магнитное действие усиливается с увеличением силы тока. И наоборот: магнитное действие катушки ослабевает при уменьшении силы тока. Но, кроме описанных нами двух способов усилить магнитное поле катушки, есть ещё один способ. Этот способ впервые придумал Доминик Франсуа Жан Араго, поместив внутрь катушки металлический стержень.
Он сделал это следующим образом: Араго взял полую стеклянную трубку и намотал на неё проводник, а затем внутрь трубки втолкнул железный стержень.
Араго заметил, что даже при постоянной силе тока и числе витков, магнитное поле катушки значительно увеличивается, если внутри трубки находится железный стержень. Впоследствии, железный стержень начали называть сердечником, а катушку с сердечником — электромагнитом. Назначение электромагнита понятно из названия: с помощью электрического тока создаётся мощный магнит.
Электромагниты широко используются людьми. Это довольно удобно, потому что регулировать мощность магнита очень легко. Его можно изготавливать разных размеров, с разным числом витков и пропускать через них различный ток. Мы не будем сейчас изучать, как рассчитывается сила электромагнита. Просто приведём несколько примеров их применения. Вы все знаете, что существуют магнитные замки. Они сделаны на основе электромагнита: чтобы открыть дверь, нужно ввести код.
При вводе кода, по электромагниту временно перестаёт течь ток, и дверь спокойно можно открыть. Когда по электромагниту течет ток, он с такой силой притягивает к себе дверь, что человек не в состоянии её открыть. При вводе кода, отключается ток, и магнитное поле пропадает. Поэтому, человек легко может открыть дверь.
Или, например, когда нужно поднять тяжелый металлический груз, использовать электромагнит очень удобно.
Широкое применение электромагниты нашли в сортировке. Особенно, это удобно, когда нужно отсортировать какие-то мелкие предметы. На установке, представленной на рисунке, вы видите крутящийся барабан, который является электромагнитом.
С его помощью, например, легко отделить металлический мусор от неметаллического, чтобы потом отправить отсортированный мусор на переработку.
Можно ещё долго перечислять области, в которых используются электромагниты, но для объяснения этого использования, нам нужно поднакопить знания.
Источник