Перечислите способы передачи вращательного движения

Способы передачи вращательного движения.

Передача – устройство, главная функция которого передача энергии на расстояние, в зависимости от способа передачи энергии, они могут быть: механические, электрические, пневматические, гидравлические. Механической передачей называется механизм, который преобразует параметры движения источника энергии (двигателя) при передаче исполнительным органам, в этом случае передача осуществляет согласование параметров движения двигателя и исполнительного рабочего органа.

Передачи вращательного движения по способу соединения тел вращения бывают: 1) передачи с контактом тел вращения – зубчатые, червячные, фрикционные, винтовые, 2) передачи гибкой связью – ремённые и цепные; по способу передачи движения – передачи с зацеплением (зубчатые, червячные, цепные), трением – ременные и фрикционные. Электри́ческая переда́ча — обеспечивает передачу тягового усилия от первичного двигателя к движителю или исполнительному органу, используя электрически соединённые электрогенератор и электродвигатель.

Сложное движение. Плоскопараллельное движение тела.

Плоскопаралле́льное движе́ние — вид движения абсолютно твёрдого тела, при котором траектории всех точек тела располагаются в плоскостях, параллельных заданной плоскости.

Примером плоскопараллельного движения по отношению к вертикальной плоскости, относительно которой тело движется в параллельном направлении, является качение колеса по горизонтальной дороге.

Пример плоскопараллельного движения относительно плоскости чертежа — качение колеса по горизонтальной дороге. Все точки колеса движутся параллельно плоскости рисунка.

Здесь плоскопараллельное движение в каждый момент времени может быть представлено в виде суммы двух движений — полюса C, являющегося не чем иным, как центром вращения колеса в связанной с ним системе координат (в общем случае по любой траектории на плоскости с точки зрения неподвижного наблюдателя) и вращательного движения остальных точек тела вокруг этого центра.

Вращение тела в случае его плоско-параллельного движения не является необходимым признаком последнего. В таком случае вектор абсолютной скорости движения любой точки будет определяться векторной суммой переносной скорости движения центра вращения С, (одинаковой для расчёта скорости любой точки колеса). И вектора относительной скорости выбранной точки, зависящей от её положения, угловой скорости вращения и расстояния от центра.

Если в данный момент для точки контакта колеса с поверхностью (точки А) эти скорости равны по модулю и противоположны по направлению, имеет место случай чистого (без проскальзывания) качения, что показано на рисунке. Только в этом случае скорость точки М будет в 2 раза больше скорости точки С и направлена в ту же сторону. В общем случае их соотношение может быть любым не только по величине, но и по направлению.

Сложное движения. Определение скорости любой точки тела.

Теорема 1. Абсолютная скорость любой точки плоской фигуры в каждый данный момент равна геометрической сумме двух скоростей: скорости произвольно выбранного полюса в поступательном движении плоской фигуры и вращательной скорости во вращательном движении фигуры относительно полюса.
Положение любой точки В тела можно определить равенством:

Взяв производную от обеих частей уравнения по времени получим,

где — искомая скорость; — скорость полюса; — скорость точки В при вращательном движении тела вокруг полюса А при Таким образом

,

Теорема 2. Проекции скоростей двух точек плоской фигуры на ось, проходящую через эти точки, равны и имеют одинаковый знак. Зная, что , спроецируем данное выражение на прямую АВ, тогда

Теорема 3. Плоская фигура в каждый момент времени имеет одну точку, абсолютная скорость которой равна нулю. Эта точка называется мгновенным центром скоростей (МЦС), обозначим ее буквой Р. Докажем существование МЦС тогда точка Р и будет искомой.

,

Источник

Передачи вращательного движения

Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами : обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.

Читайте также:  Три способа получения бутена 1

Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машины-орудия не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.

Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.

В современном машиностроении в зависимости от вида передаваемой энергии применяют механические, пневматические, гидравлические и электрические передачи. В курсе «Детали машин» рассматривают только наиболее распространенные механические передачи.

Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-орудию, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.

Передача (в механике) соединяет вал источника энергии — двигателя и валы потребителей энергии — рабочих органов машины, таких, например, как ведущие колёса гусеничного движителя или автомобиля.

Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.

При проектировании к механическим передачам предъявляются следующие требования:

— высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;

— постоянство передаточного отношения или закона его изменения;

— обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния a w ;

— малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;

— плавная и бесшумная работа;

— прочность, долговечность, надёжность.

Передачи имеют широкое распространение в машиностроении по следующим причинам:

1) энергию целесообразно передавать при больших частотах вращения;

2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;

3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще посто­янна (например, у электродвигателей);

4) нередко от одного двигателя необходимо приводить в движение не­сколько механизмов с различными скоростями;

5) в отдельные периоды работы исполнительному органу машины тре­буется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьше­ния угловой скорости вала машины-орудия;

6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;

7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания;

8) распределять работу двигателя между несколькими исполнительными органами машины.

Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).

При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.

Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.

Читайте также:  Способы открывания фасадов кухни без ручек

Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.

Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).

Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.

Классификация механических передач

Механические передачи, применяемые в машиностроении, класси­фицируют (рис.1 и 2):

по энергетической характеристике механические передачи делятся на:

— кинематические (передаваемая мощность Р

— силовые (передаваемая мощность Р ≥0,1 кВт).

по принципу передачи движения:

передачи трением (примеры: фрикционная — рис.1, а и ременная — рис.2, а) — действующие за счет сил трения, создаваемых между элементами передач;

Фрикционные передачи подразделяют на:

— фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);

— фрикционные передачи с гибким звеном (ременные, канатные).

зацеплением (примеры: зубчатые — рис.1, б, червячные — рис.1, в; цеп­ные — рис.2, б; передачи винт-гайка — рис.1, г, д) — работающие в результате возникновения давления между зубьями, кулачками или другими специальными выступами на деталях.

Передачи зацеплением делятся на:

— передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);

— волновые передачи зацеплением;

— передачи зацеплением с гибким звеном (зубчато-ременные, цепные).

Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего и ведомого звеньев или посредством гибкой связи – ремня, цепи.

Источник

Передачи вращательного движения

Передача – устройство, главная функция которого передача энергии на расстояние, в зависимости от способа передачи энергии, они могут быть: механические, электрические, пневматические, гидравлические. В курсе деталей машин мы будем изучать только механические передачи вращательного движения.

Механической передачей называется механизм, который преобразует параметры движения источника энергии (двигателя) при передаче исполнительным органам, в этом случае передача осуществляет согласование параметров движения двигателя и исполнительного рабочего органа.

Передачи вращательного движения по способу соединения тел вращения бывают: 1) передачи с контактом тел вращения – зубчатые, червячные, фрикционные, винтовые, 2) передачи гибкой связью – ремённые и цепные; по способу передачи движения – передачи с зацеплением (зубчатые, червячные, цепные), трением – ременные и фрикционные.

3.10.1. Кинематические и силовые параметры передач

Это параметры, характеризующие вращательное движение элементов передач:

1) Частота вращения, n (об/мин), выражается через угловую скорость (рад/с):

, (3.14)

2) Крутящий момент на валу T, Нм

3) Окружная скорость (Н) – сила вызывающая вращение тел или сопротивление вращению и направленная по касательной к траектории точки ее приложения.

, (3.15)

4) Мощность на валу, Р, Вт:

; (3.16)

. (3.17)

3.10.2. Передаточное отношение и КПД механизма

Отношение угловых скоростей ведущих и ведомых тел называется передаточным отношением.

. (3.18)

Для одноступенчатого редуктора:

, (3.19)

Передаточное отношение привода состоящего из нескольких передач, расположенных последовательно, равно произведению передаточных чисел всех его передач.

, (3.20)

где n – число передач, входящих в привод.

КПД привода равен отношению мощности на ведомом и ведущем валах:

, (3.21)

В общем случае КПД привода состоящего из нескольких передач равен произведению КПД передач входящих в привод:

. (3.22)

3.10.3. Ременные и цепные передачи

Передача вращения посредством ремня, надетого на шкивы, называется ременной передачей (Рис. 3.18).

Рис. 3.18. Ременные передачи

Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях или высокие скорости не позволяют применять другие виды передач.

Ременные передачи бывают: По форме поперечного сечения ремня: плоскоременные (а), клиноременные (б), круглоременные (г) а также передачи с зубчатыми ремнями (в, д, е) (Рис. 3.19).

Читайте также:  Водный налог способ уплаты налога

Рис. 3.19. Формы поперечного сечения ремней

Плоскоременные передачи более простые по конструкции, однако, клиноременные обладают большей нагрузочной способностью.

Ременные передачи по расположению осей валов подразделяются:

1) Открытыми с параллельно расположенными осями валов и вращением шкивов в одном направлении, 2) перекрестные, с параллельными осями валов и вращением шкивов в противоположных направлениях, 3) полуперекрестные со скрещивающими осями валов, 4) угловые со скрещивающимися или пересекающимися осями валов.

По способу натяжения ремня: с периодическим натяжением (перемещением опоры шкива); с автоматическим натяжением (натяжным роликам).

Преимущества ременных передач: 1) возможность больших межосевых расстояний, 2) плавность работы, гашение ударов за счет эластичности ремня и возможности проскальзывания, 3) простота конструкции и эксплуатации, 4) возможность передачи большого диапазона мощностей и скоростей, 5) относительно высокий КПД.

Недостатки: 1) относительно большие размеры передачи, 2) непостоянство передаточного отношения вследствие проскальзывания, 3) повышенная нагрузка на валы от натяжения ремня, 5) не долговечность ремней в среднем 2-3 тысячи часов работы.

Материал ремней: материал ремня должен обеспечивать надежность сцепления со шкивами и достаточную долговечность. Самые распространенные – резинотканевые ремни, кожаные, хлопчатобумажные цельнотканые, полимерные.

Клиновые ремни наиболее распространены и имеют трапециидальное сечение и выпускается 2-х типов: корд-шнуровые (а) и корд-тканевые (б) (Рис. 3.20). Корд шнуровые ремни более гибкие и долговечные поэтому применяются для более сложных условий работы.

Рис. 3.20. Типы клиновых ремней

3.10.4. Расчет и проектирование ременных передач

Основными критериями работоспособности ременных передач являются: тяговая способность, определяемая силой трения между ремнем и шкивом; долговечность ремня, которая в условиях нормальной эксплуатации ограничивается разрушением от усталости (Рис. 3.21).

Геометрические параметры ременных передач: аw – межосевое расстояние передачи, d 1 и d2 – диаметры ведущего и ведомого шкивов, α1, α2 угол обхвата ведущего и ведомого шкивов.

1) Передаточное отношение передачи:

. (3.23)

Рис. 2.21. Схема ременной передачи

С учетом скольжения ремня:

. (3.24)

где ξ(дзетта) – коэффициент скольжения ремня ξ = 0,01…0,02.

Передаточное отношение ременной передачи обычно не превышает шести;

2) Скорость ремня

. (3.25)

3) Угол обхвата меньшего шкива

. (3.26)

. (3.27)

3.10.5. Силовые взаимодействия в ременной передаче

Окружная сила ременной передачи:

, (3.28)

где F1 – натяжение ведущей ветви,

F2 натяжение ведомой ветви.

Р1 – мощность на ведомом шкиву,

V – скорость ремня,

кg – коэффициент динамической нагрузки.

Окружная скорость равна:

, (3.29)

Сила начального натяжения:

, (3.30)

где А – площадь поперечного сечения ремня,

σ0 — начальное напряжение в ремне.

, (3.31)

Решая совместно выражения (3.30) и (3.31) получим:

; (3.32)

. (3.33)

Уравнения (3.32, 3.33) представляют систему 2-х уравнений с тремя неизвестными, для его решения Эйлером было получено уравнение, представляющее собой зависимость между силой трения ремня о шкив и тяговой способностью передачи:

, (3.34)

где е = 2,71, f – коэффициент трения ремня о шкив, α — угол обхвата шкива ремнем.

Решая совместно уравнения (3.30) и (3.34) получим выражения:

, (3.35)

, (3.36)

. (3.37)

Формулы (3.36 и 3.37) устанавливают связь сил натяжения ветвей работающей передачи с величиной нагрузки Ft и факторами трения (f и α). Они позволяют также определить минимально необходимую величину предварительного натяжения ремня F0 , при которой еще возможна передача заданной нагрузки Ft:

Если: , (3.38)

то в передаче начнется буксование ремня.

Тяговая способность передачи характеризуется величиной максимально допустимой окружной силы Ft или полезного напряжения σF,учитывая формулы (3.34-3.36), можно сделать вывод, что допустимое по условию отсутствия буксования напряжение возрастает с увеличением напряжения от предварительного натяжения σ0:

. (3.39)

Практика показывает, что происходит значительное снижение долговечности ремня с увеличением σ0.

Силы натяжения ветвей ремня передаются на валы и опоры. Равнодействующая нагрузку можно определить по формуле:

. (3.40)

Обычно R в два, три раза больше окружной силы Ft.

Источник

Оцените статью
Разные способы