Пароконденсационный способ наполнения ампул

Способы наполнения ампул(шприцевой, вакуумный, пароконденсационный)

Шприцевой– с помощью поршневого дозатора или мемрного. Несколько полых игл опускаются внутрь ампул, расположенных на конвейере, происходит их заполнение раствором. Легкоокисляющинся – по принципу газовой защиты. Вначале подается инертный газ и вытесняется воздух, затем наливается раствор, затем снова ин.газ и запайка. Высокая точность дозирования, капилляры не загрязняются-важно для густых и вязких растворов. Недостаток – малая производительность, сложное аппарат оформление.

Вакуумный– в аппаратах, как вакууммоечные.. Кассету с ампулами капиллярами вниз устанавливают внутрь, создают вакуум.-воздух из ампул выходит, и после сброса, р-р заполняет ампулы В емкость подают раствор по трубопроводу, создают расчетное разряжение. Дозирование создается с помощью измеренной глубины разрежения. , предварительно определяют. После наполнения ампул вакуум гасят подачей стерильного фильтрованного воздуха. Достоинство-высокопроизв, минус-не точно, неэкономичный расод р-ра, его загрязнение, вода остается в капиллярах- что приведет к некач. запайке.

Пароконденсационный – ампулы, наполненные паром, опускаются в ванночки-дозаторы, содержащие точно отмерянный объем раствора, капиллярами вниз, за счет конденсации пара внутри ампулы создается вакуум и раствор наполняет их. После наполнения в капиллярах остается раствор, который можно удалить отсасыванием под вакуумом или продавливанием стерильным воздухом или инертным газом.

140. Запайка ампул. Контроль качества ампул. Маркировка. Упаковка. Бракераж ампулированных растворов.

Запайка: а) оплавление кончиков капилляров б) их оттяжка-отпаивание с оттяжкой части капилляра и впроцессе отпайки происходит запаивание. в) электрический нагрев. Оплавление – машина для запайки ампул АП-6М. Ампулы поступают в ячейки трансп. Ленты, ампулы достигают зоны горелок. Начинают вращаться вокруг оси и ,кончик капилляра нагревается, стекло смягчается и само заплавляет отверстие капилляра. Далее в укладчик в кассету. Недостатки оплавления- наплывы,напряжение, трещины

Оттяжка-капилляр разогревается, у вращ-ся ампулы, затем щипцами оттягивается , отпаивается и в отходы, затем горелка подводится для пережога стекл. нити.

Автомат для наполнения и запайки ампул типа 541 осуществляет наполнение шприцевым методом. НА участке запайки с пневматической оттяжкой капилляра ампула, вращается, горелки разогревают участок капилляра в месте запайки, а струи сжатого воздуха оттягивают отпаявшуюся часть. Запаянная ампула по транспортеру подается в приемник..

Амп со взрывоопасн р-рами запаивают электр. нихромовым нагревателем.

сущ-ет запайка пластмассой.

Контроль запайки: 1. ампулы помещают капиллярами вниз. Создают разрежение, из плохо запаянных раствор выливается. 2.Горячие ампулы в ванну с м\с, при резком остывании в ампулах создается разрежение и окраш. р-р поступает внутрь.3. Визуальное наблюдение за свечением газовой среды внутри ампулы под действием высокочастотного эл. Поля.

Бракераж: после запайки и стерилизации ампулы помещают в р-р м\с комн. темп. Если есть трещины, внутрь засасывается краситель.

Контроль на механич.включения: вращают, просматривают на черном фоне для проверки прозрачности и механических включений. На светлом – цвет раствора, отс-ие мех.вкл. черного цвета, целостность свекла. Также используют проекторы, линзы. Мембранно-микроскопические методы, проточные (механические частицы изменяют силу тока, прибор регистрирует микроимпульс).

Стерильность: на тест-микроорганизмах устанавливается наличие или отсутствие антимикробного действия.При обнаружении антимикробного действия используют инактиваторы. Если активатора нет, исп-т метод мембранного фильтрования для отделения антимикробных веществ. Далее растворы высеивают на тест-среды. Просматривают. Если рост хотя бы в 1 пробирке , повторяют испытание.

Маркировка, упаковка. В бункер загружают ампулы и барабаном подачи направляют к офсетному цидиндру, на который подается краска из ванны,на нем вдавлены буквы и цифры. При контакте надпись наносится на ампулу, ампулы передаются на упаковку. М.Б. одновременно маркировка и упаковка.

141. Неводные ампулированные растворы. Номенклатура. Требования к неводным растворителям и их характеристика.

Требования к растворителям: высокая растворяющая способность, химическая чистота, индифферентность, хим.совместимость, устойчивость при хранении, дешевизна. Дополнительные требования: малотоксичные, прозрачные, с небольшой вязкостью, не вызывать раздражения. Класс-ия: жирные масла, спирты, эфиры, амиды, сульфоны и сульфоксиды И их смеси. Номенклатура: гормоны, витамины, мнтибиотики, камфора, барбитураты, сера. Растит.масла: Прозрачные масл. Ж-ти, с запахом, нераств. В воде. Должны быть получены из свежих семян, не содержать влаги. Минусы: высокая вязкость, болезненные ин-ии, плохое рассасывание. Исп-т персиовое, миндальное, оливковое масла и др.. Предварительно стерилизуют. Спирты. Этиловый спирт – растворы гидрокортизона, сердечные гликозиды. Минусы: вызывает анестезию, болезненные уколы. Пропиленгликоль – сульфамиды, барбитураты, витамины а и д, анестезин. Используют смеси с водой. Пролонгирует действие. Глицерин – целанид, дибазол. В смесях с водой или спиртом. ПЭГ – нейтральны, физиологически индифф., растворимы в воде и спирте, устойчивы, не гидролизуются. Обычно исп. ПЭО 400. Р-ры дигоксина, левомицетина. Эфиры: этиловый эфир олеиновой, линолевой кислот и др. Бензилбензоат – для стероидных гормонов. ИСп-т всмеси с персик.маслом. Диоксаны и диоксаланы: солькеталь – стабильная при хранении бесцв. Жидкость. Смешивается с водой и спиртом. Растворы тетрациклина. Амиды: N,N – диметилацетамид – прозр. Нейтр. Жидкость. Р-р Тетрациклина. Сульфоксиды и сульфоны: диметилсульфоксид. НЕзначит.токсичность, смешив-ся со многими растворителями.

Читайте также:  Маринование шашлыка простыми способам

142. Природа пирогенных веществ. Пути загрязнения инъекционных растворов пирогенными веществами. Методы обнаружения пирогенных веществ.

Пирогены – липополисахаридные комплексы наружных мембран микроорганизмов, могут быть в виде агрегатов с кальцием или магнием, мицелл. Вызывают лихорадку через 30-60 мин, повышая синтез простагландинов. Термостойки. Попадают из воды при перегонке путем переброски капель воды. В паре их нет.

Обнаружение: хим.-цветные реакции, физ- измерение электропроводности, биологический метод –основан на троекратном измерении т тела тела кролика после в\в введения иссл препарата. повышение на 0.6С и более свидетельствует о наличии пирогенов. Недостатки метода: индивидуальность кролика))) высокие затраты. Лал-тест: чувствительный, быстрее результат, можно определить пироген количественно.В основе реакция гелирования лизата амебоцитов крови подковообразных крабов Лимулюс. Если есть пироген – образуется гель. минус-не определяет грамм отриц бактерии.

143. Требования, предъявляемые к физиологическим и кровозамещающим растворам. Р-ры Рингер-Локка, полиглюкина, реополиглюкина.

Физрастворы – по составу растворенных веществ способны поддерживать жизнедеятельность клеток и органов, не вызывая существенных сдвигов физиологического равновесия в организме.

Рры максим. приближ к плазме крови нз-ся кровезамещающими ж-тями.

Гемодинамические(противошоковые) – для лечения шока, восполнения объема крови. Полиглюкин, реополиглюкин,. Иногда добавляют этанол, бромиды, наркотические в-ва, глюкозу.

Регуляторы водно-солевого баланса и кислотно-щелочного равновесия – коррекция состава крови при обезвоживании, диарее, отеках мозга, токсикозе. Р-ры натрия хлорида, РИнгера, РИнгер-Локка,

Дезинтоксикационные- их компоненты связ-ся с токсинами-гемодез

Для парнт питанияр-р глюкозы 40%,

Еще сущ-ют с функцией переноса крови и полифункциональные.

Требования: апирогенность, стерильность, стабильность, отсутствие мех.вкл. Дополнительно: должны выполнять свои функции, не кумулировать, не повреждать ткани, не нарушать функции органов, быть не токсичными, не вызывать сенсибилизацию и эмболию, не раздражать сосуды. Изотоничность, изоионичность, изогидричность. Вязкость д.б. как у плазмы крови.

Раствор Рингер-Локка: изотонический по отношению к крови водный раствор хлорида натрия, хлорида кальция, однозамещенного карбоната натрия и глюкозы.

№ 1:Раствор NаС1 0,9 % — 500 мл; № 2:Раствор NаНСО3 — 0,2

КС1 — 0,2 Н2О для инъекций до 500,0

Полиглюкин плазмозамещающее, противошоковое. коллоидный раствор полимера глюкозы — декстрана бактериального происхождения, содержащий среднемолекулярную фракцию декстрана, молекулярная масса,обеспечивающего нормальное коллоидно-осмотическое давление крови человека. Препарат представляет собой 6% раствор декстрана в изотон растворе хлорида натрия; рН 4,5-6,5. Выпускают в стерильном виде во флпо 400 мл.

реополиглюкин: Реополиглюкин-10% раствор низкомолекулярного декстрана в изотоническом растворе хлорида натрия. дезагрегирующее действие, ,улучшает реологические свойства крови и микро- циркуляцию.

144. Противошоковые растворы. Растворы специального назначения (гемодез, дисоль, трисоль, ацесоль).

1. Гемодинамечские или противошоковые. для лечения шока, восполнения объема крови. Полиглюкин, реополиглюкин, желатиноль. Иногда добавляют этанол, бромиды, наркотические в-ва, глюкозу.

2. Дезинтоксикационные – для лечения интоксикаций, вызванных ожогами, инфекциями, отравлениями. Компоненты растворов должны связываться с токсинами и быстро выводиться из организма. Р-ры поливинилпирролидона, спирт поливиниловый, гемодез, полидез неогемодез, глюконеодез, энтеродез.

3. Регуляторы водно-солевого баланса и кислотно-щелочного равновесия – коррекция состава крови при обезвоживании, отеках, токсикозе. Р-ры натрия хлорида, Рингера, Рингер-Локка, Петрова, калия хлорида и др.

4. Препараты для парентерального питания. Глюкоза 40%, гидролизат казеина, аминопептид, аминокровин, липидин.

5. Растворы с функцией переноса кислорода – для восстановл дыхат.ф-ии крови.

6. Растворы комплексного действия. Требования:апирогенность, стерильность, стабильность, отсутствие мех.вкл. Дополнительно: должны выполнять свои функции, не кумулировать, не повреждать ткани, не нарушать функции органов, быть не токсичными, не вызывать сенсибилизацию и эмболию, не раздражать сосуды. Изотоничность, изоионичность, изогидричность. Вязкость д.б. как у плазмы крови.

Читайте также:  Амоксиклав инструкция способ приготовления

Дисоль: натрия хлорида 6 г, натрия ацетата 2 г, воды до 1 л

Трисоль: натрия хл 5 г, калия хлорида 1 г, натрия гидрокарбоната 4 г, воды до 1 л.

Источник

Вопрос 5 Зав. Технол

Стадия ампулирования состоит из следующих операций: наполнение ампул (сосудов) раствором, запайка ампул или укупорка сосудов и проверка качества.

Наполнение ампул раствором. Операция наполнения проводится в помещениях первого или второго классов чистоты с соблюдением всех правил асептики. Фактический объем наполнения ампул должен быть больше номинального, чтобы обеспечить нужную дозу

В технологическом процессе ампулирования применяют три известных способа наполнения ампул: вакуумный, шприцевой и пароконденсационный. Вакуумный способ нашел широкое распространение в отечественной промышленности. Этот способ по сравнению со шприцевым, являясь групповым, обладает более чем в 2 раза большей производительностью при точности дозирования ±10-15%. Так, производительность наполнительного аппарата Мариупольского завода достигает 25 тыс. мелкоемких ампул в час, тогда как автомата шприцевого наполнения фирмы «Штрунк» только 12 тыс. ампул. Вакуумный способ наполнения заключается в том, что ампулы в кассетах помещают в герметичный аппарат, в емкость которого заливают раствор, подлежащий наполнению, и создают вакуум; при этом воздух из ампул отсасывается, и после сброса вакуума раствор заполняет ампулы. При вакуумном способе дозирование раствора в ампулы производится с помощью изменения глубины разрежения, т.е. фактически регулируется объем, подлежащий заполнению, при этом сама ампула является дозирующей емкостью. Ампулы с разными объемами заполняются при соответственно созданной глубине вакуума в аппарате. Для точного наполнения ампул с помощью вакуума предварительно определяют глубину создаваемого разрежения. Обычно на заводах составляются таблицы необходимой степени разрежения в зависимости от атмосферного давления, размеров ампул и требуемого объема наполнения. В случаях, когда таких таблиц нет, ампулы наполняют при рабочем разрежении, дающем объем наполнения несколько больше и меньше требуемого, и методом интерполяции рассчитывают его искомую глубину. Невозможность точного дозирования раствора — основной недостаток вакуумного способа наполнения. К другим недостаткам можно отнести также то, что ампулы при наполнении погружаются капиллярами в дозируемый раствор, через него при создании вакуума проходят пузырьки отсасываемого воздуха, и в ампулы попадает только часть раствора, большая часть которого остается в аппарате и после цикла наполнения сливается из аппарата на перефильтрацию; все это приводит к дополнительному загрязнению и неэкономному расходу раствора. Кроме того, при наполнении загрязняются капилляры ампул, в результате чего при запайке образуются нежелательные «черные» головки от пригара раствора на конце капилляра. К недостаткам вакуумного способа наполнения следует отнести также и то, что после наполнения до проведения операции запайки ампул проходит значительный, по сравнению со шприцевым методом наполнения, интервал времени, отрицательно сказывающийся на чистоте раствора и требующий применения специальных устройств для заполнения капилляра инертным газом. При применяемой отечественной технологии между наполнением и запайкой ампул проходит более 3 мин. Большой промежуток времени создает дополнительные условия для загрязнения раствора в ампулах механическими частицами и микрофлорой из окружающей среды.

К преимуществам вакуумного способа наполнения ампул, кроме высокой производительности, можно отнести универсальность размеров и форм капилляров наполняемых ампул. За рубежом вакуумный способ наполнения ампул применяется только для недорогих препаратов и питьевых растворов. Полуавтомат для наполнения ампул состоит из корпуса с укрепленной в нем емкостью аппарата, внутри которой имеется ложное дно, удерживаемое на патрубке для подачи раствора. Патрубок снабжен насадкой с боковыми щелями непосредственно над верхней плоскостью ложного днища. Емкость аппарата имеет нижний спуск с клапаном и на боковой стенке — упоры для установки на них кассеты с ампулами. Сверху аппарат закрыт крышкой, имеющей автоматический пневмопривод для ее открывания и закрытия. Нижний спуск выведен в приемную емкость. Для замера вакуума автомат оснащен контактными вакуумманометрами. К емкости аппарата подсоединены трубопроводы питания раствором с вакуумной магистралью цеха. Процесс работы автоматизирован

В емкость устанавливают кассету с ампулами, закрывают крышку и в

аппарате создают вакуум, при этом клапаном на нижнем спуске герметизируют аппарат. Подают раствор. Под воздействием вакуума раствор струями поступает из щелей насадки и, омывая верхнюю поверхность ложного дна, стекает под ложное дно, смывая туда механические частицы. Затем в аппарате создают требуемое разрежение, соответствующее дозе раствора, заполняемого в ампулу, и гасят вакуум. Оставшийся в аппарате раствор сливается в приемную емкость и идет на перефильтрацию. Производительность полуавтомата — 60 кассет в час. Длительность цикла наполнения 50 с. После наполнения ампул вакуумным способом в капиллярах ампул остается раствор, что мешает качественной запайке и загрязняет инъекционный раствор продуктами сгорания. Растворы из капилляров ампул можно удалить: — отсасыванием раствора под вакуумом;

Читайте также:  Вид пошлины по способу еще исчисления

— продавливанием раствора стерильным воздухом или инертным газом (в полуавтомате АП-5М2);

— обработкой струей пара или водой апирогенной. Полуавтомат для продавливания раствора из капилляров в ампулу типа АП-5М2. В корпусе полуавтомата установлена емкость с крышкой. К емкости присоединены системы питания сжатым воздухом, инертным газом, вакуумом, она также соединена с атмосферой. Емкость имеет нижний спуск. Крышка аппарата имеет привод и запорные устройства. Цикл работы автоматизирован. В емкость устанавливают кассету с ампулами, затем заполняют фильтрованным воздухом. Вакуумом закрывают крышку аппарата, создают в аппарате давление. В полуавтомате можно проводить задавливание раствора из капилляров в ампулы емкостью 1-20 мл. Производительность аппарата (ампулы 1-2 мл) составляет 40 тыс. ампул в час. Давление воздуха при продавливании раствора составляет 2-5 кГ/см2.

Шприцевой способ наполнения ампул (рис. 19.19) получил широкое распространение за рубежом и осуществляется при помощи установок со специальными дозаторами (поршневыми, мембранными и др.). Метод имеет более сложное аппаратурное оформление, чем вакуумный и более жесткие требования к размерам и форме капилляров ампул, но из-за ряда преимуществ относится к более предпочтительным для применения в технологии ампулирования. При проведении операций наполнения и запайки в одном автомате особенно

сказываются эти преимущества.

К более существенным из них следует также отнести возможность точною дозирования раствора (±2%) и небольшой промежуток времени наполнением и запайкой (5-10 с), что позволяет эффективно использовать наполнение их свободного объема инертным газом, значительно увеличивающим срок годности препарата. При наполнении в ампулу вводится необходимое количество раствора, при этом капилляр ампулы остается чистым, благодаря чему улучшаются условия запайки ампул. Особенно это важно для густых и вязких растворов. При технологии ампулирования в токе инертных газов ампула, подлежащая наполнению, предварительно заполняется газом и раствор при наполнении практически не соприкасается с окружающей средой (атмосферой) помещения. Это приводит к повышению стабильности многих инъекционных растворов. Несколько полых игл опускаются внутрь ампул, расположенных на конвейере. Вначале в ампулу подается инертный газ, вытесняя воздух, затем подается раствор с помощью поршневого дозатора, и вновь — струя инертного газа, после чего ампула тотчас поступает на позицию запайки. Недостатком метода следует назвать его невысокую производительность — до 10 тыс. ампул в час. В настоящее время создан ряд конструкций дозирующих элементов, работающих без движущих частей, что позволяет полностью предотвратить загрязнение раствора в процессе дозирования. Ряд зарубежных фирм применяют для этой цели перистальтические насосы, различные дозаторы мембранного типа. Ввод дозы в ампулу под давлением позволяет применить при наполнении дополнительную фильтрацию раствора непосредственно в момент наполнения, что дает возможность гарантировать чистоту, а при фильтрации с помощью ультрафильтра — и стерильность раствора в ампуле. Пароконденсационный способ. Ампулы после резки полностью погружают капиллярами вверх в емкость с водой снабженную ультразвуковыми излучателями. При воздействии ультразвука ампулы быстро заполняются водой и тут же дополнительно озвучаются. После этого ампулы переводят в положение «капиллярами вниз» и направляют в камеру, где промывают сначала наружную поверхность душированием, а затем внутреннюю пароконденсационным способом Во время выхода воды из ампул их подвергают вибрации с целью максимального удаления из них механических частиц. Ампулы после промывки поступают в камеру для дозирван-ного заполнения раствором пароконденсационным способом и запайки. Промывная вода непрерывно фильтруется и возвращается в схему.

Источник

Оцените статью
Разные способы