- Решение задач по математике онлайн
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- Решение задач разными способами: способы решения задач в начальной школе, решение задач 2 способами 2 класс
- Способы решения задач в начальной школе
- графический способ решения задач: чертёж
- Петерсон решение задач
- Решение задач несколькими способами
- графический способ решения задачи
- арифметический способ решения задачи
- Решение задач разными способами: 2 класс
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Немного теории.
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ \left\< \begin
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ \left\< \begin
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)
Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Источник
Решение задач разными способами: способы решения задач в начальной школе, решение задач 2 способами 2 класс
Школьникам проще справиться с примерами на умножение или деление, чем найти ответ в задаче, требующей определенных математических навыков. Учебники по математике для второклассников включают ряд текстовых задач, которые решаются разными способами. Такие задания развивают у детей навыки логического и абстрактного мышления, а также помогают укрепить их способности в решении задач.
Перед вами способы, которые помогут с легкостью решить любую математическую задачу.
Способы решения задач в начальной школе
Школьники часто теряются, когда сталкиваются с решением текстовых задач. Им нужно научиться анализировать информацию и находить полезные инструменты для выполнения заданий.
Особенность текстовых задач в том, что в них прямо не указывается, какое именно действие (или действия) нужно выполнить для нахождения ответа.
Различают несколько способов решения задач – алгебраический, арифметический и графический.
- Первый способ подразумевает ряд арифметических действий над числами.
- Алгебраический — нахождение ответа через х, т.е. решение через уравнение.
- В результате применения графического метода искомые значения величин находятся с помощью геометрических образов: отрезков прямой, прямоугольников, квадратов и т.д.
графический способ решения задач: чертёж
Не существует наиболее рационального способа решения, т.к. все варианты в итоге имеют одинаковый ответ.
Петерсон решение задач
Решение задач несколькими способами
На дереве сидело 7 голубей и 5 ласточек. 4 птицы улетели. Сколько птиц осталось?
графический способ решения задачи
графический
В первом ряду изображены голуби, в нижнем — ласточки. Если 4 голубя улетели (их зачеркнули), осталось всего 8 символов.
Ответ: 8 птиц осталось сидеть на дереве.
арифметический способ решения задачи
арифметический
Если улетели ласточки, узнаем, сколько птиц осталось.
5-4 = 1 (ласт.)
К голубям добавим 1 ласточку.
7 + 1 = 8 (пт.)
арифметический 2-й вариант
Если дерево покинули голуби, узнаем, сколько птиц осталось сидеть.
7-4 = 3 (гол.) — осталось
Сложим оставшееся количество голубей и ласточек.
3 + 5 = 8 (пт.)
Ответ: 8 птиц осталось сидеть на дереве.
Решение задач разными способами: 2 класс
Задача 1
В автобусе ехало 16 пассажиров. 5 пассажиров вышло на первой остановке, на второй салон покинуло еще 3 человека. Сколько пассажиров осталось в автобусе?
1 вариант решения арифметический
- Узнаем общее количество вышедших пассажиров.
- Сколько пассажиров осталось в автобусе?
5 + 3 = 8 (п.) — всего пассажиров вышло на остановках
16 — 8 = 8 (п.) — пассажиров осталось в автобусе
Ответ: 8 пассажиров осталось в автобусе
2 вариант графический
Зеленым цветом помечено количество вышедших пассажиров, красным — количество оставшихся. Подсчитаем деления на красном конце и получим 8 человек.
Ответ: 8 пассажиров осталось в автобусе
Важно! Решение задачи несколькими способами является проверкой правильности. Одинаковые ответы указывают на правильность решения.
Задача 2
Маляру нужно покрасить 15 окон. К обеду он покрасил 5 окон, после обеда — 3. Сколько окон осталось ему покрасить?
1 вариант решения арифметический
- Узнаем общее количество окрашенных окон.
- Узнаем количество неокрашенных окон.
5 + 3 = 8 (ок.) — всего окон покрасил маляр
15-8 = 7 (ок.) — окон осталось покрасить
Ответ: маляру осталось покрасить 7 окон
2 вариант решения арифметический
- Сколько окон нужно было покрасить после обеда?
- Сколько окон осталось покрасить ?
15-5 = 10 (ок.) — окон нужно было покрасить после обеда
10-3 = 7 (ок.) — окон осталось покрасить
Ответ: маляру осталось покрасить 7 окон
Задача 3
Маша купила в магазине несколько ручек. 4 штуки она подарила подруге, после чего у нее осталось 8 ручек. Сколько ручек купила Маша?
1 вариант решения алгебраический
Пускай Маша купила х ручек, 4 она подарила и 8 штук осталось. Имеем уравнение
Х — 4 = 8
Х =8+4
Х =12 (р.) купила всего
Ответ: Маша купила 12 ручек
2 вариант решения арифметический
Общее количество ручек находим из сложения подаренных и оставшихся ручек.
8+4 = 12 (шт.)
Ответ: Маша купила 12 ручек
Задача 4
В веревочном парке Максим до обеда преодолел 6 воздушных троп. А после отдыха он поднялся на 3 столба и одолел 5 подвесных мостов. Сколько всего препятствий покорил Максим?
1 вариант арифметический
Найдем общее количество преград, преодоленных Максимом после обеда.
3 + 5 = 8 (п.) — преодолел;
Сложим преодоленные преграды до отдыха и после отдыха.
6 + 8 = 14 (п.) — всего.
Ответ: Максим преодолел 14 преград
2 вариант арифметический
Найдем количество преград после восхождения мальчика на столбы.
6+3 = 9 (п.)
Всего, после того как преодолел подвесные мосты.
9+5=14 (п.)
Ответ: Максим преодолел 14 преград
Задача 5
У Ирины было 20 красных и 40 синих бусин. Она использовала 30 бусин. Сколько бусин осталось у девочки?
1 вариант арифметический
- Сколько всего было бусин у девочки?
- Сколько бусин осталось?
20 + 40 = 60 (в.) — всего бусин было у девочки
60-30 = 30 (б.) — бусин осталось у девочки
Ответ: у Ирины осталось 30 бусин
2 вариант решения арифметический
Поскольку в задаче не указано, какого цвета бусины использовала девочка, предположим, что девочка использовала синие бусины, тогда
- Сколько синих бусин осталось у девочки?
- Сколько бусин осталось у девочки?
40-30 = 10 (б.) — синих бусин осталось у девочки
20 + 10 = 30 (б.) — бусин осталось у девочки
Ответ: у девочки осталось 30 бусин
Текстовые математические задачи непростые, но, вникая в их суть и регулярно практикуясь, школьник постепенно укрепляет свои навыки. А поверить правильность ответа можно с помощью разных способов решения.
Источник