- Отделение корней. Графический и аналитический методы отделения корней (стр. 1 из 2)
- Содержание
- 1. Отделение корней. 3
- 2. Графический метод. 4
- 3. Аналитический метод (табличный или шаговый). 5
- 4. Метод половинного деления (Дихотомии). 9
- 1. Отделение корней
- 2. Графический метод
- 3. Аналитический метод (табличный или шаговый).
- Отделить корни уравнения аналитически
- Решение
- Решение
- Аналитический метод отделения корней
- Реферат: Отделение корней. Графический и аналитический методы отделения корней
- Содержание
- 1. Отделение корней. 3
- 2. Графический метод. 4
- 3. Аналитический метод (табличный или шаговый). 5
- 4. Метод половинного деления (Дихотомии). 9
- 1. Отделение корней
- 2. Графический метод
- 3. Аналитический метод (табличный или шаговый).
- Вычислительная математика копия 1
- 1.1 Отделение корня
- Графический метод отделения корня
- 1.2 Уточнение корня методом деления отрезка пополам
- 1.3 Метод хорд
Отделение корней. Графический и аналитический методы отделения корней (стр. 1 из 2)
Государственное образовательное учреждение
высшего профессионального образования
Владимирский государственный университет
Кафедра автоматизации технологических процессов
по предмету: “Моделирование систем”
на тему: ”Отделение корней. Графический и аналитический методыотделения корней”
Группа ЗАУ91-107РуководительКирилина А.Н.Разработал студентЕрёмин Е.С. |
Содержание
1. Отделение корней. 3
2. Графический метод. 4
3. Аналитический метод (табличный или шаговый). 5
4. Метод половинного деления (Дихотомии). 9
1. Отделение корней
В общем случае отделение корней уравнения f(x)=0 базируется на
известной теореме, утверждающей, что если непрерывная функция f(x) на
концах отрезка [a,b] имеет значения разных знаков, т.е. f(a)×f(b) 3 -6x+2=0 видим, что при
Если предварительный анализ функции затруднителен, можно “пойти в лобовую атаку”. При уверенности в том, что все корни различны, выбираем некоторый диапазон возможного существования корней (никаких универсальных рецептов!) и производим “прогулку” по этому интервалу с некоторым шагом, вычисляя значения f(x) и фиксируя перемены знаков. При выборе шага приходится брать его по возможности большим для минимизации объема вычислений, но достаточно малым, чтобы не пропустить перемену знаков.
2. Графический метод
Этот метод основан на построении графика функции y=f(x). Если построить график данной функции, то искомым отрезком [a,b], содержащим корень уравнения (1), будет отрезок оси абсцисс, содержащий точку пересечения графика с этой осью. Иногда выгоднее функцию f(x) представить в виде разности двух более простых функций, т.е.
Пример. Графически решить уравнение
Решение. Запишем исходное уравнение в виде:
Таким образом, корни данного уравнения могут быть найдены как абсциссы точек пересечения кривых
Теперь построим графики функций и определим интервал изоляции корня.
3. Аналитический метод (табличный или шаговый).
Для отделения корней полезно помнить следующие известные теоремы:
1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b) 1
Источник
Отделить корни уравнения аналитически
отделить корни аналитически и уточнить один из них методом итераций
Здравствуйте, очень нужна ваша помощь. Помогите решить уравнение x^3+3x^2-6x-1 E=0,01 Если.
Отделить корни аналитически и уточнить один из них методом половинного деления с точностью 0.01
Задание: Отделить корни аналитически и уточнить один из них методом половинного деления с точностью.
Отделить корни уравнения
Здравствуйте! По математическим методам (1 курс ВУЗ) задали Д/З, а я не могу понять как сделать.
Решение
Решение
remag7,
Интервал на котором находятся все корни алгебраического уравнения определяется очень просто.
Для кубического уравнения все корни лежат на интервале (-k; k), где
, pmax = max (|a|, |b|, |c|, |d|)
для вашего уравнения находим, что a = 1 pmax = 6 и k = 7
итак искомый интервал (-7; 7)
Примечание
эта формула легко обобщается на многочлен любой степени.
Джентльмены, а что такое Pmax?
Добавлено через 5 минут
А, понял, благодарю)
Добавлено через 2 минуты
zvm2,
А это справедливо для уравнений любой степени или только кубических?
Отделить корни уравнения и уточнить один из них методом хорд
Помогите пожалуйста решить задание по предмету численные методы! Отделить корни уравнения.
Отделить корни уравнения графически и уточнить наибольший корень методом половинного деления
Решение нелинейных уравнений методом половинного деления. Отделить корни уравнения графически и.
Отделить корни ур-ия
Ребят помогите начать, а то что затрудняюсь! Задание: Отделить корни ур-ия и уточнить их методом.
Решение иррационального уравнения, неразрешимого аналитически
Мне потребовалось решить следующее уравнение \sqrt
Источник
Аналитический метод отделения корней
Для отделения действительных корней непрерывных функций следует помнить следующее:
ü если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] одинаковые знаки (т.е. f(a)·f(b) > 0), то на этом интервале имеется четное число корней или их нет (рис. 2);
! нельзя забывать, что корнем функции может быть не только точка пересечения графика функции f(x) с осью x, но и его касание с осью x (рис. 3). В этом случае монотонность функции нарушается.
ü если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] разные знаки (т.е. f(a)·f(b)
! иногда для единственности корня бывает достаточно и знакопостоянства второй производной.
Таким образом, чтобы отделить все корни уравнения, следует:
Вычислим значения функции f(x) на концах отрезка [-3, 3]:
f(-3) = (-3) 3 — 8·(-3) + 2 = -1, f(3) = (3) 3 — 8·3 + 2 = 5.
f(-3)∙f(3) 2 — 8 – непрерывна. Для определения интервалов монотонности f(x) найдем значения x, при которых f’(x) = 0. f’(x) = 3x 2 – 8 = 0 при x = ≈ ±1,633.
Таким образом, можно отделить следующие интервалы монотонности функции f(x): [-3; -1,633], [-1,633; 1,633], [1,633; 3] и на каждом из этих интервалов отделено по одному корню уравнения.
Для наглядности вычислим значения f(x) и f’(x) на концах этих промежутков (табл. 1). f’(x) = 3x 2 – 8.
Источник
Реферат: Отделение корней. Графический и аналитический методы отделения корней
Название: Отделение корней. Графический и аналитический методы отделения корней Раздел: Рефераты по информатике Тип: реферат Добавлен 11:03:33 16 июня 2011 Похожие работы Просмотров: 2994 Комментариев: 22 Оценило: 8 человек Средний балл: 4.5 Оценка: 5 Скачать |
Из рис.1 видно, что корень находится на отрезке [1,2]. В качестве приближенного значения этого корня можно взять значение х=1.5. Если взять шаг по оси Ох меньше, то и значение корня можно получить более точное. |
3. Аналитический метод (табличный или шаговый).
Для отделения корней полезно помнить следующие известные теоремы:
1) если непрерывная функция f(x) принимает значения разных знаков на концах отрезка [a,b], т.е. f(a)f(b) 0, значит корня на отрезке [0;0.5] нет.
f(0.5)f(1) 0, значит корня на отрезке [0.5;0.75] нет.
Источник
Вычислительная математика копия 1
Уравнение называется алгебраическим, если его можно представить в виде:
Формула (1.1) – каноническая форма записи алгебраического уравнения. Если уравнение f(x)=0 не удается привести к виду (1.1) заменой переменных, то уравнение называется трансцендентным.
Решить уравнение означает найти такие значения x , при которых уравнение превращается в тождество.
Известно, что уравнение (1.1) имеет ровно n корней – вещественных или комплексных. Если n =1, 2, 3 [и иногда 4 (биквадратное уравнение], то существуют точные методы решения уравнения (1.1). Если же n >4 или уравнение – трансцендентное, то таких методов не существует, и решение уравнения ищут приближенными методами. Всюду при дальнейшем изложении будем предполагать, что f(x) – непрерывная функция. Методы, которые мы рассмотрим, пригодны для поиска некратных (то есть изолированных) корней.
1.1 Отделение корня
Решение уравнения состоит из двух этапов: 1 – отделение корня, 2 – его уточнение.
Отделить корень – значит указать такой отрезок [a , b] , на котором содержится ровно один корень уравнения f(x)=0.
Не существует алгоритмов отделения корня, пригодных для любых функций f (x). Если удастся подобрать такие a и b , что
2) f ( x ) – непрерывная на [ a , b ] функция (1.3)
3) f ( x ) – монотонная на [ a , b ] функция (1.4)
то можно утверждать, что на отрезке [a , b] корень отделен.
Условия (1.2) –(1.4) – достаточные условия того, что корень на [a , b] отделен, то есть если эти условия выполняются, то корень отделен, но невыполнение, например, условий (1.3) или (1.4) не всегда означает, что корень не отделен.
Корень можно отделить аналитически и графически.
Пример. Аналитически отделить положительный корень уравнения x 3 -7x-5=0 Решение. Составим таблицу
Графический метод отделения корня
1.2 Уточнение корня методом деления отрезка пополам
Уточнить корень – значит найти его приближенное значение с заданной погрешностью e .
Самый простой метод, пригодный для любых непрерывных функций – метод деления отрезка пополам.
Предположим, что отрезок [a , b], на котором отделен корень уравнения, уже найден.
Пусть, например, f(a)> 0, f(b) e 1=(b-a)/2. Если эта погрешность не превышает некоторую заданную погрешность e , с которой нужно уточнить корень уравнения, то вычисления прекращаем и можно записать: ?=x ±(b-a)/2 . В противном случае определяем новый отрезок [a , b], на котором отделен корень нашего уравнения. Для этого определим знак функции в точке х. В нашем примере f (x )>0. Новый отрезок – отрезок [x , b], так как на концах этого отрезка функция имеет разные знаки. Переобозначим один из концов отрезка – в нашем случае положим a = x — и повторим процедуру для нового отрезка [a , b].
1.3 Метод хорд
Идея метода состоит в следующем. Проводим прямую через точки с координатами (a ,f(a)), (b ,f(b)). Находим точку пересечения прямой с осью Х. Определяем знак функции в этой точке. Далее проводим прямую через те точки, абсциссы которых содержат корень уравнения ? . Вычисления прекращаются, как только выполнится условие |xn+1-xn| e .
Источник