Отделение корней аналитическим способом

Аналитические методы отделения корней

Цель работы

Целью работы является изучение численных методов решения алгебраических и трансцендентных уравнений. В настоящей работе рассматриваются следующие методы нахождения корней уравнения :

· — Метод деления отрезка пополам.

· — Метод касательных (Метод Ньютона).

Примеры заданий

Найти корни уравнений :

1. x 2 — 0.5 + sin(x) =0;

2. 2 * sin(x) — x 2 + 0.3 * x = 0;

3. 0.1 * sin(x) + x 3 — 1 = 0;

4. 0.1 * x 2 — x * Ln(x) = 0;

5. 0.1 * x 3 — 2 * x 2 + x — 5 = 0;

6. x 3 — 0.39 * x 2 — 10.5 * x + 11 = 0;

8. 2.5 — 3 * sin(x + Pi / 4) = 0 ;

9. abs(x) + cos(x + Pi / 8) — 2.5 = 0.

Найти минимальный положительный корень :

10. sin(x) = P — q * x, 0 0;

13. Ln(x) = P — q * x 2 , P,q > 0.

Теоретические сведения

Пусть уравнение имеет вид f(x) = 0. Функция f(x) определена в некотором конечном или бесконечном интервале a

6.3.4 Метод деления отрезка пополам

Дана функция f(x) непрерывная на отрезке a,b и удовлетворяющая условию f(a) * f(b) k .

При k ® , lim(bk — ak) ® 0. Следовательно, при k ® , lim ak = lim bk = x*, где символом обозначена бесконечность.

Процесс деления отрезка прекращается при условии, что

Противоположная граница будет неподвижной (точка d). Вычисления корня прекращаются при условии, что

Источник

Аналитический метод отделения корней

Для отделения действительных корней непрерывных функций следует помнить следующее:

ü если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] одинаковые знаки (т.е. f(af(b) > 0), то на этом интервале имеется четное число корней или их нет (рис. 2);

! нельзя забывать, что корнем функции может быть не только точка пересечения графика функции f(x) с осью x, но и его касание с осью x (рис. 3). В этом случае монотонность функции нарушается.

ü если функция f(x) непрерывна на интервале [a, b] и имеет на концах интервала [a, b] разные знаки (т.е. f(af(b)

! иногда для единственности корня бывает достаточно и знакопостоянства второй производной.

Таким образом, чтобы отделить все корни уравнения, следует:

Вычислим значения функции f(x) на концах отрезка [-3, 3]:

f(-3) = (-3) 3 — 8·(-3) + 2 = -1, f(3) = (3) 3 — 8·3 + 2 = 5.

f(-3)∙f(3) 2 — 8 – непрерывна. Для определения интервалов монотонности f(x) найдем значения x, при которых f’(x) = 0. f’(x) = 3x 2 – 8 = 0 при x = ≈ ±1,633.

Таким образом, можно отделить следующие интервалы монотонности функции f(x): [-3; -1,633], [-1,633; 1,633], [1,633; 3] и на каждом из этих интервалов отделено по одному корню уравнения.

Для наглядности вычислим значения f(x) и f’(x) на концах этих промежутков (табл. 1). f’(x) = 3x 2 – 8.

Источник

Вычислительная математика копия 1

Уравнение называется алгебраическим, если его можно представить в виде:

Формула (1.1) – каноническая форма записи алгебраического уравнения. Если уравнение f(x)=0 не удается привести к виду (1.1) заменой переменных, то уравнение называется трансцендентным.

Решить уравнение означает найти такие значения x , при которых уравнение превращается в тождество.

Известно, что уравнение (1.1) имеет ровно n корней – вещественных или комплексных. Если n =1, 2, 3 [и иногда 4 (биквадратное уравнение], то существуют точные методы решения уравнения (1.1). Если же n >4 или уравнение – трансцендентное, то таких методов не существует, и решение уравнения ищут приближенными методами. Всюду при дальнейшем изложении будем предполагать, что f(x) – непрерывная функция. Методы, которые мы рассмотрим, пригодны для поиска некратных (то есть изолированных) корней.

Читайте также:  Гастроэнтерит способ передачи острый

1.1 Отделение корня

Решение уравнения состоит из двух этапов: 1 – отделение корня, 2 – его уточнение.

Отделить корень – значит указать такой отрезок [a , b] , на котором содержится ровно один корень уравнения f(x)=0.

Не существует алгоритмов отделения корня, пригодных для любых функций f (x). Если удастся подобрать такие a и b , что

2) f ( x ) – непрерывная на [ a , b ] функция (1.3)

3) f ( x ) – монотонная на [ a , b ] функция (1.4)

то можно утверждать, что на отрезке [a , b] корень отделен.

Условия (1.2) –(1.4) – достаточные условия того, что корень на [a , b] отделен, то есть если эти условия выполняются, то корень отделен, но невыполнение, например, условий (1.3) или (1.4) не всегда означает, что корень не отделен.

Корень можно отделить аналитически и графически.

Пример. Аналитически отделить положительный корень уравнения x 3 -7x-5=0 Решение. Составим таблицу

Графический метод отделения корня

1.2 Уточнение корня методом деления отрезка пополам

Уточнить корень – значит найти его приближенное значение с заданной погрешностью e .

Самый простой метод, пригодный для любых непрерывных функций – метод деления отрезка пополам.

Предположим, что отрезок [a , b], на котором отделен корень уравнения, уже найден.

Пусть, например, f(a)> 0, f(b) e 1=(b-a)/2. Если эта погрешность не превышает некоторую заданную погрешность e , с которой нужно уточнить корень уравнения, то вычисления прекращаем и можно записать: ?=x ±(b-a)/2 . В противном случае определяем новый отрезок [a , b], на котором отделен корень нашего уравнения. Для этого определим знак функции в точке х. В нашем примере f (x )>0. Новый отрезок – отрезок [x , b], так как на концах этого отрезка функция имеет разные знаки. Переобозначим один из концов отрезка – в нашем случае положим a = x — и повторим процедуру для нового отрезка [a , b].

1.3 Метод хорд

Идея метода состоит в следующем. Проводим прямую через точки с координатами (a ,f(a)), (b ,f(b)). Находим точку пересечения прямой с осью Х. Определяем знак функции в этой точке. Далее проводим прямую через те точки, абсциссы которых содержат корень уравнения ? . Вычисления прекращаются, как только выполнится условие |xn+1-xn| e .

Источник

Отделение корней В Excel

Лабораторная работа

Отделение корней нелинейного уравнения

Пусть имеется нелинейное уравнение .

Требуется найти корни этого уравнения. Численный процесс приближенного решения поставленной задачи разделяют два этапа: отделение корня и уточнение корня.

Для отделения корня необходимо определить промежуток аргумента , где содержится один и только один корень уравнения. Одна из точек этого промежутка принимается за начальное приближение корня. В зависимости от метода, который предполагается использовать для уточнения корня, требуется определение некоторых свойств отделенного корня и поведения функции на отрезке отделения. Например, при использовании метода деления пополам, необходимо и достаточно установить лишь непрерывность функции на отрезке отделения.

Этап отделения корня уравнения алгоритмизирован только для некоторых классов уравнений (наиболее известным из которых является класс алгебраических уравнений), поэтому отделение корней нелинейных уравнений, обычно, выполняется «вручную» с использованием всей возможной информации о функции . Часто применяется графический метод отделения действительных корней, обладающий большой наглядностью.

Методы отделения корней

Отделение корней во многих случая можно произвести графически. Учитывая, что действительные корни уравнения F ( x )=0 – это есть точки пересечения графика функции y = F ( x ) с осью абсцисс y =0, нужно построить график функции y = F ( x ) и на оси OX отметить отрезки, содержащие по одному корню. Но часто для упрощения построения графика функции y = F ( x ) исходное уравнение заменяют равносильным ему уравнением f 1 ( x )= f 2 ( x ). Далее строятся графики функций y 1 = f 1 ( x ) и y 2 = f 2 ( x ), а затем по оси OX отмечаются отрезки, локализующие абсциссы точек пересечения двух графиков.

На практике данный способ реализуется следующим образом: например, требуется отделить корни уравнения cos(2 x )+ x -5=0 графически на отрезке [–10;10], используя Excel .

Построим график функции f (x)=cos(2 x )+x-5 в декартовой системе координат. Для этого нужно:

Ввести в ячейку A1 текст х .

Ввести в ячейку B1 текст y =cos(2 x )+ x -5.

Ввести в ячейку А2 число -10, а в ячейку А3 число -9.

Выделить ячейки А2 и А3.

Навести указатель «мыши» на маркер заполнения в правом нижнем углу рамки, охватывающий выделенный диапазон. Нажать левую кнопку «мыши» и перетащить маркер так, чтобы рамка охватила диапазон ячеек А2:А22.

Ячейки автоматически заполняются цифрами :

Ввести в ячейку В2 формулу =COS(2*A2)+A2-5.

Методом протягивания заполнить диапазон ячеек В3:В22.

Вызвать «Мастер диаграмм» и выбрать диаграмму график (первый вид), нажать «далее».

Указать диапазон данных, для этого щелкнуть кнопку в поле «Диапазон» и выбрать диапазон данных В2:В22.

Выбрать вкладку ряд, указать имя ряда, щелкнув кнопку в поле «ряд» и выбрав В1.

В поле «подписи по оси Х», щелкнуть кнопку и выбрать диапазон А2:А22, нажать «далее».

Подписать названия осей x и y соответственно, нажать «далее».

Вывести диаграмму на том же листе, что и таблица, нажать кнопку «готово».

В итоге получаем следующее (рисунок 1):

Рисунок 1 – Локализация корня

Анализируя полученное изображение графика, можно сказать, что уравнение cos(2 x )+ x -5=0 имеет один корень – это видно из пересечения графика функции y=cos(2 x )+ x -5 с осью OX. Можно выбрать отрезок, содержащий данный корень: [5;6] – отрезок локализации .

Для подтверждения полученных данных, можно решить эту же задачу вторым способом. Для этого необходимо уравнение cos(2 x )+ x -5=0 преобразовать к виду: cos(2 x )=5- x . Затем следует каждую часть уравнения рассмотреть как отдельную функцию. Т. е. y 1 =cos(2 x ) и y 2 =5- x . Для решения этой задачи в Excel необходимо выполнить следующие действия:

Вести в ячейки А1:C1 соответственно текст: « x », « y 1 =cos(2 x )», « y 2 =5- x ».

A2:A22 заполнить так же как при решении задачи первым способом.

В В2 ввести формулу =COS(2*A2).

Методом протягивания заполнить диапазон ячеек В3:В22.

В С2 ввести =5-A2.

Методом протягивания заполнить диапазон ячеек С3:С22.

С помощью Мастера диаграмм выбрать график (первый вид).

В данном случае диапазон данных следует указывать для построения двух графиков. Для этого нужно нажать кнопку в поле «Диапазон» и выделить ячейки В2:В22, затем нажать Ctrl (на клавиатуре) и выделить следующий диапазон C2:C22.

Перейти на вкладку ряд, где выбрать именем ряда 1 ячейку В1, а именем ряда 2 ячейку С2.

Подписать ось x , выбрав диапазон А2:А22.

Подписать соответственно оси x и y .

Поместить диаграмму на имеющемся листе.

Результат представлен на рисунке 2: Анализируя полученный результат, можно сказать, что точка пересечения двух графиков попадает на тот же самый отрезок локализации [5;6] , что и при решении задачи первым способом.

Рисунок 2 – Локализация корня

Аналитический способ отделения корней

Аналитический способ отделения корней основан на следующей теореме , известной из курса математического анализа.

ТЕОРЕМА: Если непрерывная на функция , определяющая уравнение , на концах отрезка принимает значения разных знаков, т.е. , то на этом отрезке содержится, по крайней мере, один корень уравнения. Если же функция непрерывна и дифференцируема и ее производная сохраняет знак внутри отрезка , то на этом отрезке находится только один корень уравнения.

В случае, когда на концах интервала функция имеет одинаковые знаки, на этом интервале корни либо отсутствуют, либо их четное число.

Для отделения корней аналитическим способом выбирается отрезок , на котором находятся все интересующие вычислителя корни уравнения. Причем на отрезке функция F (x) определена, непрерывна и F ( a )* F ( b ) . Требуется указать все частичные отрезки , содержащие по одному корню.

Б
удем вычислять значение функции F ( x ) , начиная с точки x = a , двигаясь вправо с некоторым шагом h . Если F ( x )* F (x+ h ) , то на отрезке [ x ; x + h ] существует корень (рисунок 3).

Рисунок 3 – Аналитический способ локализации корней

Доказательство существования и единственности корня на отрезке.

В качестве примера рассмотрим функцию f (x)=cos(2 x )+x-5 .

Ввести в ячейки А1, В1 и С1 соответственно « x », « y =cos(2 x )+ x -5» и «ответ».

В А2 и А3 ввести граничные значения отрезка изоляции.

В В2 ввести формулу =COS(2*A2)+A2-5 и методом протягивания заполнить В3.

В С2 ввести формулу =ЕСЛИ(B2*B3

Таким образом, на отрезке изоляции корень существует:

Р
исунок 4 – Проверка существования корня на отрезке

Для доказательства единственности корня на отрезке изоляции необходимо выполнить следующие действия:

Продолжить работу в том же документе MS Excel.

Заполнить D1 и E1 соответственно: « y’ =-sin(2 x )*2+1» и «ответ» (причем выражение y’ =-sin(2 x )*2+1 – это производная первого порядка от функции y =cos(2 x )+ x -5).

Ввести в D2 формулу =-SIN(2*A2)*2+1 и методом протягивания заполнить D3.

Ввести в E2 =ЕСЛИ(D2*D3>0;»корень на данном отрезке единственный»;»Корень не единственный»).

В
результате получаем (рисунок 5):

Рисунок 5 – Доказательство единственности корня на отрезке

Таким образом доказано существование и единственность корня на отрезке изоляции.

Рассмотрим решение задачи отделения корней уравнения
cos(2 x )+ x -5=0 аналитическим способом с шагом 1 на отрезке [-10;10].

Чтобы отделить корни уравнения аналитическим способом с помощью Excel, необходимо выполнить следующее:

Заполнить ячейки A1:D1 соответственно: « x », « y =cos(2 x )+ x -5», « h », «ответ».

В С2 ввести значение 1.

Ввести в А2 значение -10.

Ввести в А3 =A2+$C$2 и методом протягивания заполнить ячейки А4:А22.

В В2 ввести =COS(2*A2)+A2-5 и методом протягивания заполнить диапазон В3:В22.

В
С3 ввести формулу =ЕСЛИ(B2*B3

В результате получаем следующее (рисунок 6):

Рисунок 6 – Отделение корня

Следующий пример (рисунок 7) демонстрирует отделение нескольких корней. Пусть исследуется функция cos ( x )=0,1 x на интервале [–10;10] с шагом 1.

Табулирование функции и построение графика осуществляется как в предыдущих примерах. Видно, что на заданном отрезке имеем 7 корней, находящихся внутри отрезков: [-10;-9]; [-9;-8]; [-5;-4]; [-2;-1]; [1;2]; [5;6]; [7;8].

Рисунок 7 – Отделение корней

Обратим внимание на то, что надежность рассмотренного алгоритма отделения корней уравнения зависит как от характера функции F (x), так и от выбранной величины шага h . Для повышения надежности следует выбирать при отделении корней достаточно малые значения h .

1. Выполнить отделение корней следующих функций:

Источник

Оцените статью
Разные способы