От способа получения зависит количественный состав

Качественный и количественный состав вещества

Что такое химическая формула?

В любой науке есть своя система обозначений. Химия в этом плане не исключение. Вам уже известно, что для обозначения химических элементов используются символы, образованные от латинских названий элементов. Химические элементы способны образовывать как простые, так и сложные вещества, состав которых можно выразить химической формулой.

Чтобы написать химическую формулу простого вещества необходимо записать символ химического элемента, который образует простое вещество, и справа внизу записать цифру, показывающую количество его атомов. Данная цифра называется индексом.

Например, химическая формула кислорода – О2. Цифра 2 после символа кислорода – это индекс, указывающий, что молекула кислорода состоит из двух атомов элемента кислорода.

Индекс – число, показывающее в химической формуле количество атомов определенного типа Чтобы написать химическую формулу сложного вещества, необходимо знать, из атомов каких элементов оно состоит (качественный состав), и число атомов каждого элемента (количественный состав).

Например, химическая формула пищевой соды – NaHCO3. В состав этого вещества входят атомы натрия, водорода, углерода, кислорода – это его качественный состав. Атомов натрия, водорода, углерода по одному, а атомов кислорода – три. Это количественный состав соды

  • Качественный состав вещества показывает, атомы каких элементов входят в его состав
  • Количественный состав вещества показывает количество атомов, которые входят в его состав

Химическая формула – условная запись состава вещества при помощи химических символов и индексов

Обратите внимание на то, что если в химической формуле присутствует только один атом одного вида, индекс 1 не ставится. Например, формулу углекислого газа записывают так – CO2, а не С1О2.

Видео

Что показывает состав количественный

Он демонстрирует количественное содержание каждого элемента внутри сложного вещества.

К примеру, в воде находится два атома водорода и один кислорода. Серная кислота состоит из двух водородов, одного атома серы, четырех кислородов.

В составе ортофосфорной кислоты три атома водорода, один фосфор, четыре атома кислорода.

Качественный и количественный состав веществ есть и у органических веществ. Например, метан содержит один углерод и четыре водорода.

Химический состав сложных веществ и механических смесей

Сложное вещество (химическое соединение) – это вещество, состоящее из атомов различных химических веществ.

Основные признаки химического соединения:

  • Однородность;
  • Постоянство состава;
  • Постоянство физических и химических свойств;
  • Выделение или поглощение энергии при образовании;
  • Невозможность разделения на составные части физическими методами.

В природе нет абсолютно чистых веществ. В любом веществе имеется хотя бы ничтожный процент примесей. Поэтому на практике всегда имеют дело с механическими смесями веществ. Однако, если содержание одного вещества в смеси значительно превосходит содержание всех остальных, то условно считается, что такое вещество является индивидуальным химическим соединением.

Допустимое содержание примесей в веществах, выпускаемых промышленностью, определяется стандартами и зависит от марки вещества.

Общепринята следующая маркировка веществ:

  • техн – технический (в своем составе может иметь до 20%; примесей);
  • ч – чистый;
  • чда– чистый для анализа;
  • хч – химически чистый;
  • осч – особой чистоты (допустимая норма примесей в составе – до 10 -6 %).

Вещества, образующие механическую смесь, называются компонентами. При этом вещества, масса которых составляет большую часть от массы смеси, называют основными компонентами, а все остальные вещества, образующие смесь – примесями.

Отличия механической смеси от химического соединения:
  • Любую механическую смесь можно разделить на составные части физическими методами, основанными на различии плотностей, температур кипения и плавления, растворимости, намагничиваемости и других физических свойств компонентов, образующих смесь (например, смесь древесных и железных опилок можно разделить с помощью Н2О или магнита);
  • Непостоянство состава;
  • Непостоянство физических и химических свойств;
  • Неоднородность (хотя смеси газов и жидкостей могут быть однородны, к примеру – воздух).
  • При образовании механической смеси не происходит выделения и поглощения энергии.

Промежуточное положение между механическими смесями и химическими соединениями занимают растворы:

Как и для химических соединений, для растворов характерна:

  • однородность;
  • выделение или поглощение теплоты при образовании раствора.

Как и для механических смесей, для растворов характерна:

  • легкость разделения на исходные вещества физическими методами (например, выпариванием раствора поваренной соли, можно получить отдельно Н2О и NaCl );
  • непостоянство состава – их состав может меняться в широких пределах.

Примеры определения состава

«Опишите качественный и количественный состав следующих веществ: оксида серы (4), оксида серы (6)». Такое задание является типовым в школьном курсе неорганической химии. Для того чтобы справиться с ним, сначала нужно составить формулы предложенных соединений, пользуясь валентностями либо степенями окисления.

В обоих предложенных оксидах присутствуют одни и те же химические элементы, следовательно, их качественный состав одинаковый. Они включают в себя атомы серы и кислорода. А вот в количественном соотношении результаты будут отличаться.

В первом соединении содержится два атома кислорода, а во втором их шесть.

Выполним следующее задание: «Опишите качественный и количественный состав веществ H2S».

Молекула сероводорода состоит из атома серы и двух водородов. Качественный и количественный состав вещества H2S позволяет предугадывать его химические свойства. Так как в составе присутствует катион водорода, сероводород способен проявлять окислительные свойства. Например, подобные характеристики проявляются во взаимодействии с активным металлом.

Читайте также:  Анвимакс инструкция по применению порошок способ применения

Информация о качественном и количественном составе вещества актуальна и для органических соединений. Например, зная количественное содержание компонентов в молекуле углеводорода, можно определить его принадлежность к определенному классу веществ.

Такая информация позволяет предугадывать химические и физические характеристики анализируемого углеводорода, выявлять его специфические свойства.

Например, зная, что в составе есть четыре атома углерода и десять водородов, можно сделать вывод о принадлежности данного вещества к классу предельных (насыщенных) углеводородов, имеющих общую формулу СпН2п+2. Для всех представителей данного гомологического ряда характерны реакции замещения по радикальному механизму, а также окисление кислородом воздуха.

Качественный и количественный состав веществ

Каждое вещество характеризуется определенным качественным и количественным составом.

Качественный состав вещества показывает, из атомов каких элементов оно состоит. Например, вода состоит из атомов водорода и кислорода, а метан— из атомов углерода и водорода. Число атомов каждого элемента в составе мельчайшей частицы вещества характеризует его количественный состав. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода, а молекула метана — из одного атома углерода и четырех атомов водорода.

Сложное вещество можно с помощью различных химических методов разложить на несколько новых веществ, и так до тех пор, пока не получатся вещества, каждое из которых будет являться простым. Например, сахар при нагревании разлагается на воду и уголь (углерод):

а воду можно разложить с помощью электрического тока на водород и кислород:

Свойства простых веществ, которые при этом получаются (углерода, кислорода и водорода), совершенно не похожи на свойства сложных веществ — сахара и воды. Это разные вещества с разными свойствами. Свойства сложного вещества не являются суммой свойств простых веществ, которые образуются при его разложении.

Сложные вещества, как и простые, имеют либо молекулярное, либо немолекулярное строение. При этом вещества молекулярного строения могут существовать при обычных условиях в различных агрегатных состояниях. Например, метан — газ, вода — жидкость, сахар — твердое вещество.

Вещества немолекулярного строения при обычных условиях — твердые кристаллы, например поваренная соль, мел. Конечно, при нагревании (иногда до нескольких тысяч градусов) такие вещества плавятся, а затем переходят и в парообразное состояние.

Источник

Конспект по химии для 8 класса «Основные понятия химии»

Предварительный просмотр:

8 класс Первоначальные химические понятия

Химия – наука о веществах, составе и свойствах веществ, а также превращениях между ними.

Вещество — материя, из которой состоит физическое тело.

Химический элемент –определенный вид атомов, имеющих одинаковый размер, массу и свойства.

Атом- наименьшая частица вещества, являющаяся носителем его свойств.

Молекула – частица, образованная из двух или большего числа атомов и способная к самостоятельному существованию.

Простое вещество — вещество, состоящее из атомов одного химического элемента.

Сложное вещество — вещество, состоящее из атомов разных химических элементов.

Относительная атомная масса (Ar) — величина, которая показывает, во сколько раз масса атома химического элемента больше атомной единицы массы (1/12 массы атома углерода).

Относительная молекулярная масса(Mr) – величина, которая показывает, во сколько раз масса молекулы больше атомной единицы массы (1/12 массы атома углерода).

Ион — это положительно или отрицательно заряженная частица, образованная из атома химического элемента в результате отдачи или присоединения электронов. Положительно заряженный ион- катион , отрицательно заряженный ион – анион.

Химическая связь — такое взаимодействие между атомами, которое связывает их в молекулы, ионы, кристаллы.

  • Ионная связь — связь, возникающая между ионами. (за счет перехода электронов от атома металла к атому неметалла):NaCl, CaBr 2 , K 2 O и др.
  • Ковалентная неполярная связь — связь, возникающая между атомами одного и того же химического элемента – неметалла (О 2 , N 2 , Cl 2, Br 2 , O 3 и т.п.)
  • Ковалентная полярная связь — связь, возникающая между атомами разных неметаллов (СО 2 , H 2 O, NH 3 ).
  • Металлическая связь — связь, возникающая между атомами и ионами металлов за счет обобществленных электронов (Сu, Al, Na, K и др.).

Электроотрицательность — способность атома химического элемента притягивать к себе общие электронные пары от атомов других химических элементов.

Степень окисления – условный заряд атомов химического элемента в соединении, вычисленный на основе предположения, что соединения состоят только из ионов.

— простые (металлы и неметаллы)

— сложные (оксиды, основания, кислоты, соли).

  • Оксиды — сложные вещества, состоящие из двух химических элементов, один из которых кислород со степенью окисления -2. ( Э х О у -2 )
  • Основания — сложные вещества, состоящие из катионов металла и гидроксид-ионов ОН. (Me +x (OH) x )
  • Кислоты — сложные вещества, состоящие из катионов водорода Н + и анионов кислотных остатков.
  • Соли — сложные вещества, состоящие из катионов металла и анионов кислотных остатков.

Моль — такое количество вещества, в котором содержится 6∙10 23 частиц этого вещества (атомов, молекул или ионов)

Молярная масса(M)- масса 1 моль вещества, численно равна относительной молекулярной массе, но в отличие от нее имеет единицы измерения. [M]=[г/моль].

Молярный объем (Vm)- объем газа количеством вещества 1 моль, измеренный при нормальных условиях ( t= 0 o C или 273К, р=101,3 кПа, 1 атм или 760мм рт. ст.). Vm= 22,4 л/моль

Химическая реакция — явление, в результате которого из одних веществ образуются другие вещества, при этом изменяется состав и свойства веществ.

  • Реакции разложения — реакции, в результате которых из одного сложного вещества образуются нескольно простых или сложных веществ( АВ= А+В)
  • Реакции соединения — реакции, в результате которых из нескольких простых или сложных веществ образуется одно сложное. (А+В=АВ).
  • Реакции замещения – реакции, в результате которых атомы простого вещества замещают один или несколько атомов в сложного вещества ( А +ВС= А С +В)
  • Реакции обмена — реакции, в результате которых атомы сложных веществ обмениваются своими составными частями ( А В+ C D= A D + C B)
Читайте также:  Способы соединения пвх ткани

Физические явления — явления, при которых могут изменяться размеры, форма тел и агрегатное состояние веществ, при этом состав их остается постоянным.

Химическое уравнение – условная запись химической реакции с помощью химических формул и математических знаков.

Закон сохранения массы веществ (1748г М.В. Ломоносов, 1789г А.Лавуазье): масса веществ , вступивших в химическую реакцию, равна массе образовавшихся веществ.

Закон постоянства состава (1808г Ж. Пруст)- вещества молекулярного строения имеют постоянный количественный и качественный состав, не зависящий от способа их получения.

Периодический закон (1861 г Д.И.Менделеев ) –свойства химических элементов и их соединений находятся в периодической зависимости от зарядов ядер их атомов.

Основные законы химии

Закон сохранения массы веществ

Закон постоянства состава

Периодический закон

Закон сохранения массы

Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Общая форма закона сохранения и превращения энергии имеет вид:

Изучая тепловые процессы, мы будем рассматривать формулу

При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Закон эквивалентов

Эквивалент (Э) – реальная или условная частица вещества, кото­рая может присоединить, заместить в кислотно-основных реакциях один ион водорода (или другого одновалентного элемента), а в окис­лительно-восстановительных реакциях – присоединить или высвободить один электрон.

Под условной частицей вещества подразумевается реально су­ществующие частицы (молекулы, ионы, электроны и т.д.), доли этих частиц (например, 1 /2 иона) или их группы.

Фактор эквивалентности fэ (х) – число, обозначающее, какая доля реальной частицы вещества X эквивалентна одному иону водорода в кислотно-основной реакции или одному электрону в реакции окисления-восстановления.

Фактор эквивалентности – величина безразмерная. Принимает значения 1 или меньше единицы.

Для простых веществ и элементов в соединении fэ(х) = 1/В, где В – валентность элемента.

Например, для водорода или натрия fэ= 1/1 = 1. Для магния или кислорода fэ = 1/2.

Молярная масса эквивалента вещества Мэ(х) – масса одного моля эквивалента этого вещества, равная произведению фактора эквивалентности fэ(х) на молярную массу вещества Мх.

Например, молярные массы эквивалентов простых веществ:

Мэ(Na) = 1· 23 = 23 г/моль;

Мэ(Mg) = ½ · 24 = 12 г/моль;

Если одно из реагирующих веществ – газ, то для него вводится понятие объема эквивалента вещества – Vэ(х), который рассчитывается на основании следствия из закона Авогадро:

1 моль газа массой М занимает объем 22,4 л, при нормальных условиях (н.у.):

Р o = 1 атм.; Т о = 273 К

1 эквивалент газа массой Мэ занимает объем Vэ при н.у.

Например, при нормальных условиях 1 моль эквивалентов водорода занимает объем, равный:

Для кислорода эта величина составляет

Закон эквивалентов: массы (или объемы) реагирующих веществ пропорциональны молярным массам эквивалентов (или эквивалентным объемам) этих веществ.

Если одно из этих веществ представляет собой газ, то закон эквивалентов записывается в виде

Закон кратных отношений

Относительные атомные и молекулярные массы являются мерой масс атомов и молекул, поэтому они позволяют сделать вывод о соотношении масс атомов различных элементов в молекуле сложного вещества.

Пример: Относительная атомная масса водорода и кислорода соответственно равна 1,00794 и 15,9994, откуда следует, что соотношение масс атомов водорода и кислорода составляет 1 : 16. В молекуле воды H2O содержится два атома водорода и один атом кислорода, следовательно, массовое отношение водорода и кислорода в воде равно 2 : 16 или 1 : 8. Соотношение атомных масс элементов в соединениях устанавливает закон постоянства состава, вывел его в начале XIX в. французский химик Жозеф Луи Пруст (1754-1826) на основании анализа химических соединений.

Его современная формулировка такова:

Каким бы способом ни было получено вещество, его химический состав остается постоянным

В каждом сложном веществе (независимо от способа его получения) сохраняются неизменными соотношения чисел атомов и масс атомов входящих в его состав элементов. При этом, отношение чисел атомов различных элементов выражается небольшими целыми числами. Так, для воды H2O они составляют 2 : 1, для диоксида углерода CO2 — 1 : 2, для оксида азота (III) N2O3 — 2 : 3. Эти числа и определяют состав указанных сложных веществ.

Отсюда следует, что если два или несколько простых веществ соединяются с образованием некоторого сложного вещества, то и массовое отношение реагирующих веществ постоянно для данного продукта. Так, при взаимодействии водорода и кислорода могут быть получены вода H2O и пероксид водорода H2O2; очевидно, что не только в самих продуктах массовое отношение водорода и кислорода равно соответственно 1 : 8 и 1 : 16, но и массовые отношения реагентов будут такими же.

Читайте также:  Язык жестов это способ передачи информации

На основании закона постоянства состава и закона кратных отношений английский исследователь Джон Дальтон (John Dalton, 1766-1844) в 1807 г. высказал атомную гипотезу (основу атомно-молекулярного учения о строении вещества):

Любое вещество составлено из мельчайших химических частиц — атомов; простое вещество состоит из атомов одного элемента, сложное вещество — из атомов различных элементов.

Из атомной гипотезы вытекает, что закон постоянства состава отражает именно атомный состав вещества: в молекулу вещества объединяется определенное число именно атомов одного или различных элементов. Закон кратных отношений, открытый Дальтоном, гласит:

Если два элемента образуют между собой несколько соединений, то массы атомов одного элемента, приходящиеся на одну и ту же массу атомов другого элемента, соотносятся между собой как небольшие целые числа.

Пример: Сера образует два оксида — диоксид SO2 и триоксид SO3. Относительная атомная масса серы и кислорода равна 32 и 16 (округлено). Массовое отношение серы и кислорода в SO2 равно 32 : (2·16) = 32 : 32, в SO3 32 : (3·16) = 32 : 48. Отсюда следует, что на каждые 32 массовые части серы в этих соединениях приходится 32 и 48 массовых частей кислорода соответственно, т.е. а после сокращения в соответствии с математическими законами, соотношение массовых частей кислорода 32 : 48 = 2 : 3, что и является отношением небольших кратных чисел.

Закон объемных отношений (закон Гей-Люссака)

Закон Авогадро

Из закона Авогадро вытекает важное следствие: моль любого газа при нормальных условиях (0С (273 К) и давлении 101,3 кПа) занимает объем, равный 22,4 л. В этом объеме содержится 6,02 10 23 молекул газа (число Авогадро).

Из закона Авогадро также следует, что массы равных объемов различных газов при одинаковых температуре и давлении относятся друг к другу как молярные массы этих газов:

М1 и М2 – молекулярные массы первого и второго газов.

Поскольку масса вещества определяется по формуле

где ρ – плотность г аза,

то плотности различных газов при одинаковых условиях пропорциональны их молярным массам. На этом следствии из закона Авогадро основан простейший метод определения молярной массы веществ, находящихся в газообразном состоянии.

Закон Авогадро позволяет рассчитать плотность газа при нормальных условиях, на основании отношения молярной массы М к объему моля:

.

Из этого уравнения можно определить молярную массу газа:

.

Объединенный газовый закон

Идеальный газ — это такой гипотетический газ, молекулы которого не взаимодействуют друг с другом и занимают нулевой объем. Соотношения между давлением, объемом и температурой газов устанавливают законы идеальных газов: объединенный газовый закон, законы для изобарическо­го, изохорического и изотермического процессов.

Реальные газы обычно хорошо подчиняются законам идеальных газов при давлениях, менее или несущественно превышающих атмосферное, и при температурах близких к температуре окружающей среды или более высоких. Поэтому законы идеальных газов находят широкое применение в природопользовании, в частности при расчетах количества, состава газов, выделяющихся при горении, и в других технологических процессах, со­провождаемых их образованием.

Объединенный газовый закон можно также записать в другой форме:

Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю (см. гл. 4), то соответствующая постоянная обозначается буквой R и называется молярная газовая постоянная, или просто газовая постоянная. Если давление выражено в атмосферах, постоянная R имеет значение

R = 8,314 Дж*К* моль-1

Объединенный газовый закон для одного моля газа приобретает вид:

где Vm- объем одного моля газа. Для п молей газа получается уравнение:

В такой форме объединенный газовый закон называется уравнением состояния идеального газа. Уравнение состояния это уравнение, связывающее между собой параметры состояния газа-давление, объем и температуру.

Газ, который полностью подчиняется уравнению состояния идеального газа, называется идеальный газ. Такой газ не существует в действительности. Реальные газы хорошо подчиняются уравнению состояния идеального газа при низких давлениях и высоких температурах. Отклонения в поведении реальных газов от предписываемш уравнением состояния идеального газа подробно обсуждаются ниже.

Вычисление относительной молекулярной массы с помощью уравнения состояние идеального газа. Уравнение состояния идеального газа позволяет проводить прямые вычисления относительной молекулярной массы газа M1. Введем понятие относительной молекулярной массы, основываясь на уже знакомом нам (из гл. 1) определении относительной атомной массы A1. Для газа, состоящего из простых молекул, относительная молекулярная масса представляет собой сумму относительных атомных масс всех атомов, входящих в молекулу. Например, для диоксида углерода.

Относительная молекулярная масса, выраженная в граммах на моль, называется молярной массой (см. гл. 4). Следовательно, молярная масса CO2 равна 44 г/моль. Два моля CO2 имеют массу 88 г, а и молей-массу п -44 г. В общем случае можно записать:

где n-количество вещества в молях (т.е. число молей данного вещества), т-масса вещества в граммах, a M-его молярная масса.

Подстановка полученного выражения для п в уравнение состояния идеального газа (4) дает:

Это уравнение позволяет, зная массу и объем газа при определенных температуре и давлении, вычислить его молярную массу М. А поскольку

M = M (г/моль), то полученный результат непосредственно дает относительную молекулярную массу М.

Уравнение Клайперона—Менделеева (для идеального газа)

n – число молей газа;

P – давление газа, Па;

V – объем газа, м 3 ;

T – абсолютная температура газа, К;

R – универсальная газовая постоянная 8,314 Дж/моль×K.

Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:

Источник

Оцените статью
Разные способы