Особенности нервной регуляции древний способ регуляции

Биология. 6 класс

Конспект урока

Биология, 6 класс

Урок 14. Гуморальная и нейрогуморальная регуляция

Перечень вопросов, рассматриваемых на уроке

  1. На уроке познакомитесь с регуляцией процессов жизнедеятельности у живых организмов.

Рефлекс – ответная реакция организма на раздражитель с участием нервной системы.

Нервная регуляция – это способ регуляции функций организма при помощи нервных импульсов, поступающих к органам из головного и спинного мозга.

Гуморальная регуляция – это способ регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью гормонов, выделяемых особыми органами – желёзами.

*Нейрон – это структурно–функциональная единица нервной ткани (нервная клетка).

*Гормоны – биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь.

Основная и дополнительная литература по теме урока

  1. Биология. 5 – 6 класс. Линия жизни. / В. В. Пасечник, С. В. Суматохин, Г. С. Калинова, Г. Г. Швецов, З. Г. Гапонюк. – М.: Просвещение, 2018.
  2. Биология в схемах и таблицах / А. Ю. Ионцева, А. В. Торгалов.
  3. Введение в биологию. Неживые тела. Организмы: учеб. для уч — ся 5 – 6 кл. общеобразоват. учеб. заведений / А. И. Никишов. – М.: Гуманитар. изд. центр ВЛАДОС, 2012.
  4. Биология. Живой организм. 5 – 6 классы: учебник для общеобразовательных учреждений с приложением на электронном носителе / Л. Н. Сухорукова, В. С. Кучменко, И. Я. Колесникова. – М.: Просвещение, 2013.
  5. Биология. Обо всем живом. 5 класс: учебник / С. Н. Ловягин, А. А. Вахрушев, А. С. Раутиан. – М.: Баласс, 2014.

Теоретический материал для самостоятельного изучения

Все жизненно важные процессы жизнедеятельности организма растений и животных осуществляются во взаимосвязи и в соответствии с процессами, происходящими во внешней среде регулируются двумя способами: нервным и гуморальным. Любые изменения в окружающей среде тотчас влияют на живые организмы, и они перестраивают свою деятельность в соответствии с условиями окружающей среды.

Гуморальная и нервная регуляции

Тело человека, как и многих животных имеет очень сложное строение. От клеток до систем органов организм представляет собой взаимосвязанную систему, для нормального функционирования которой должен быть создан четкий механизм регулирования. Он осуществляется двумя путями. Первый способ является самым быстрым. Он называется нервной регуляцией. Данный процесс воплощает в жизнь одноименная система. Существует ошибочное мнение, что гуморальная регуляция осуществляется с помощью нервных импульсов. Однако это совсем не так. Гуморальная регуляция осуществляется с помощью гормонов, которые поступают в жидкостные среды организма.

Гуморальная регуляция функции осуществляется с помощью специализированных органов. Они называются железами и объединяются в отдельную систему, которая называется эндокринной. Эти органы образованы особым видом эпителиальной ткани и способны к регенерации. Действие гормонов носит долгосрочный характер и продолжается на протяжении всей организма.

Железами выделяются гормоны. Благодаря особой структуре эти вещества ускоряют или нормализуют различные физиологические процессы в организме. К примеру, в основании головного мозга находится железа гипофиз. Она продуцирует гормон роста, в результате действия, которого организм увеличивается в размерах.

Итак, гуморальная регуляция в организме осуществляется с помощью особых органов – желез. Они обеспечивают постоянство внутренней среды, или гомеостаз. Их действие носит характер обратной связи. К примеру, такой важнейший для организма показатель, как уровень сахара в крови, регулируется гормоном инсулином в верхнем пределе и глюкагоном — в нижнем. Таков механизм действия эндокринной системы.

Особенности нервной регуляции

Данная система включает центральный и периферический отдел. Если гуморальная регуляция функций организма осуществляется с помощью химических веществ, то данный способ представляет собой «транспортную магистраль», связывающую организм в единое целое. Происходит этот процесс достаточно быстро. Только представьте, что вы дотронулись рукой до горячего утюга или зимой босиком вышли на снег. Реакция организма будет практически мгновенной. Это имеет важнейшее защитное значение, способствует и адаптации, и выживанию в различных условиях. Нервная система лежит в основе врожденных и приобретённых реакций организма. Первыми являются безусловные рефлексы. К ним относятся дыхательный, сосательный, мигательный. А с течением времени у человека формируются приобретенные реакции. Это безусловные рефлексы.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Выберите три верных утверждения. Гормоны в организме млекопитающих образуются в:

Правильный вариант ответа:

Задание 2. Выделите цветом правильные суждения. Нервная регуляция – это регуляция функций организма при помощи нервных импульсов, поступающих из центральной нервной системы. Основные функции нервной системы:

  1. Восприятие действующих на организм раздражителей.
  2. Передача нервных импульсов через кровеносную систему.
  3. Проведение и обработка воспринимаемой информации.
  4. Формирование ответных приспособительных реакций, включая высшую нервную деятельность и психику.
  5. Медленно регулирует работу организма.
  6. Сигнал формируется в железах внутренней секреции.
  1. Восприятие действующих на организм раздражителей.
  2. Передача нервных импульсов через кровеносную систему.
  3. Проведение и обработка воспринимаемой информации.
  4. Формирование ответных приспособительных реакций, включая высшую нервную деятельность и психику.
  5. Медленно регулирует работу организма.
  6. Сигнал формируется в железах внутренней секреции.

Источник

Нервная и гуморальная регуляции

Организм человека представляет собой очень сложную систему, в которой каждая отдельная клеточка выполняет свою роль. Во время эволюции происходило усложнение этой системы, поэтому сегодня человек более развит, чем многие другие живые организмы на планете.

Читайте также:  Что такое разведка способы ведения разведки

Из-за того что гуморальная регуляция не могла полноценно справляться с поставленными задачами, начала постепенно развиваться нервная регуляция. Она отличается наличием огромного количества нейронов промежуточного характера, а также имеет отдаленные центры контроля. Данные типы регуляции очень тесно связаны между собой и помогают человеку достигать определенных целей.

Особенности гуморальной регуляции

Гуморальная регуляция в своей основе применяет специальные химические вещества. Они способны поступать в кровь, лимфу и таким образом перемещаются по всему организму. Самую главную роль в этом случае выполняют гормоны. Они вырабатываются железами внутренней секреции. В большинстве случаев данные железы находятся на определенном расстоянии от того органа, который они контролируют.

Возможности гуморальной регуляции в человеческом организме имеют определенные ограничения. Ее действие требует очень много времени, ведь химические соединения вырабатываются с определенной скоростью. Кроме того, потребуется еще время на то, чтобы они поступили в кровь и распространились по организму.

Нейрогуморальная регуляция отвечает за огромное количество процессов, которые происходят внутри человека:

  • Развитие организма и его рост.
  • Процесс пищеварения.
  • Работа внутренних органов, в особенности сердечно-сосудистой системы.
  • Дыхание.

Если нервная и гуморальная регуляции полноценно функционируют, то реакция на изменения окружающей среды будет достаточно быстрой.

Особенности нервной регуляции

Во время эволюции формирование нервной регуляции произошло намного позже, чем гуморальной. Специалисты отмечают тот факт, что живым существам стало недостаточно тех связей между клетками, которые могла предоставить гуморальная регуляция. Информацию нужно было передавать максимально быстро. Кроме того, требовалась более эффективная реакция на те угрозы, которые поступали из окружающей среды.

Особенностью, которая считается основной в случае с нервной регуляцией, выступает передача биоэлектрических потенциалов между клетками. Это специальные импульсы. Нервная система постепенно становилась все более сложной. Спустя некоторое время центральная нервная система стала представлять собой невероятно сложное устройство кибернетического характера. Она поделилась на многочисленные разделы, которые соединяются между собой с помощью неких «транспортных магистралей». За счет этого организм может с достаточно большой скоростью управлять совершенно всеми органами и посылать к ним импульсы и приказы.

В человеческом организме применяются специальные центральные структуры для того, чтобы выполнять разные этапы нервной регуляции. Основными считаются головной мозг и те подкорковые ядра, которые в нем присутствуют, а также периферические образования, представленные нервными сплетениями.

Человек не может полноценно существовать только с нервной регуляцией. Очень важную роль играет достаточное количество гормонов, которые влияют непосредственно на функциональные возможности человека. Эти два типа регуляций должны тесно взаимодействовать между собой, чтобы контролировать все органы и клеточки в организме. А поскольку нервная регуляция зависит от работы головного мозга, необходимо постоянно поддерживать этот орган в тонусе. Это можно делать с помощью когнитивных тренажеров Викиум.

Источник

НЕ́РВНАЯ РЕГУЛЯ́ЦИЯ

  • В книжной версии

    Том 22. Москва, 2013, стр. 490

    Скопировать библиографическую ссылку:

    НЕ́РВНАЯ РЕГУЛЯ́ЦИЯ, ко­ор­ди­ни­рую­щее влия­ние нерв­ной сис­те­мы на клет­ки, тка­ни и ор­га­ны, при­во­дя­щее их дея­тель­ность в со­от­вет­ст­вие с по­треб­но­стя­ми ор­га­низ­ма и из­ме­не­ния­ми ок­ру­жаю­щей сре­ды. Н. р. име­ет боль­шое зна­че­ние в обес­пе­че­нии це­ло­ст­но­сти ор­га­низ­ма и вхо­дит в чис­ло ме­ха­низ­мов го­мео­ста­за. Н. р. – фи­ло­ге­не­ти­че­ски бо­лее мо­ло­дой ме­ха­низм ре­гу­ля­ции по срав­не­нию с ре­гу­ля­ци­ей, осу­ще­ст­в­ляе­мой че­рез жид­кие сре­ды ор­га­низ­ма (кровь, лим­фу, тка­не­вую жид­кость) с по­мо­щью био­ло­ги­че­ски ак­тив­ных ве­ществ, в т. ч. гор­мо­нов. По ме­ре диф­фе­рен­циа­ции и раз­ви­тия нерв­ной сис­те­мы в хо­де эво­лю­ции раз­ви­ва­ет­ся взаи­мо­дей­ст­вие этих спо­со­бов ре­гу­ля­ции. Н. р. ос­но­ва­на на реф­лек­тор­ных свя­зях. Она осу­ще­ст­в­ля­ет­ся по­сред­ст­вом ме­диа­то­ров, вы­де­ляе­мых нерв­ны­ми окон­ча­ния­ми на ин­нер­ви­ро­ван­ные клет­ки, и ад­ре­со­ва­на стро­го оп­ре­де­лён­но­му ор­га­ну или груп­пе кле­ток. Ско­рость Н. р. в сот­ни раз пре­вы­ша­ет ско­рость воз­дей­ст­вия гор­мо­нов. Вме­сте с тем мн. ме­диа­то­ры (аце­тил­хо­лин, но­рад­ре­на­лин, се­ро­то­нин и др.) мо­гут ре­гу­ли­ро­вать дея­тель­ность ор­га­нов и тка­ней, по­сту­пая в кровь.

    Источник

    Особенности нервной регуляции древний способ регуляции

    3.1 Нервная регуляция дыхания

    Дыхательный центр представляет собой совокупность нейронов продолговатого мозга, обладающих ритмической активностью и определяющих ритм дыхательных движений. Бульбарный дыхательный центр выполняет две основные функции:

    1) регуляцию двигательной активности дыхательных мышц (двигательная функция);

    2) гомеостатическую, связанную с изменением характера дыхания при сдвигах газового состава и кислотно-основного равновесия в крови и тканях.

    Двигательная функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна (длительности вдоха, выдоха, величины дыхательного объема).

    Нейроны дыхательного центра расположены в дорсомедиальной и вентролатеральной областях продолговатого мозга, образуя так называемую дорсальную и вентральную дыхательные группы. В указанных дыхательных группах расположены следующие виды нейронов:

    1) ранние инспираторные, максимальная частота разряда которых приходится на начало инспирации;

    2) поздние инспираторные нейроны, максимальная частота разряда – в конце инспирации;

    3) полные инспираторные нейроны, характеризующиеся постоянной активностью в течение фазы вдоха;

    4) постинспираторные нейроны, максимальный разряд которых обнаруживается в течение выдоха;

    5)экспираторные нейроны, активность которых возрастает во второй части выдоха;

    Читайте также:  Коэффициент роста цепной способ

    6) преинспираторные нейроны, максимальный пик активности проявляют перед началом вдоха.

    В структурах бульбарного дыхательного центра различают так называемые респираторно-связанные нейроны, активность которых совпадает с ритмом дыхания, но они не иннервируют дыхательные мышцы, а обеспечивают иннервацию верхних дыхательных путей.

    В соответствии с локализацией нейронов бульбарного дыхательного центра, различают дорсальную дыхательную группу (ДДГ) и вентральную дыхательную группу (ВДГ). Нейроны дорсальной дыхательной группы получают афферентные сигналы от легочных рецепторов растяжения по волокнам n. Vagus. Только часть инспираторных нейронов дорсальной группы дыхательного центра связана аксонами с дыхательными мотонейронами спинного мозга, преимущественно с контрлатеральной стороной.

    Вентральная дыхательная группа расположена латеральнее обоюдного ядра продолговатого мозга, подразделяется на ростральную и каудальную части. Причем, ростральная часть вентральной дыхательной группы представлена ранними, поздними, полными инспираторными и постинспираторными нейронами.

    Дорсальная и вентральная группы нейронов в правой и левой половинах продолговотого мозга взаимосвязаны как в пределах одной половины, так и с нейронами противоположной стороны. В синхронизации деятельности контрлатеральных нейронов бульбарного дыхательного центра участвуют проприобульбарные нейроны и экспираторные нейроны комплекса Бетцингера.

    Касаясь функциональных особенностей отдельных нейронов бульбарного дыхательного центра, следует отметить, что ранние инспираторные нейроны (активируются в момент вдоха) называют еще проприобульбарными, так как не направляют свои аксоны за пределы дыхательного центра продолговатого мозга и контактируют только с другими типами дыхательных нейронов. Часть полных и поздних инспираторных нейронов направляет свои аксоны к дыхательным мотонейронам спинного мозга. Все экспираторные нейроны каудальной части вентральной дыхательной группы направляют аксоны в спинной мозг. При этом 40% экспираторных нейронов иннервируют внутренние межреберные мышцы, а 60% — мышцы брюшной стенки.

    Таким образом, нейроны бульбарного дыхательного центра в зависимости от их значимости в регуляции внешнего дыхания разделяют на три группы:

    1) нейроны, иннервирующие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях;

    2) нейроны, синаптически связанные с мотонейронами спинного мозга и регулирующие активность мышц вдоха и выдоха;

    3) проприобульбарные нейроны, участвующие в генерации дыхательного ритма, аксоны которых обеспечивают связь только с нейронами продолговатого мозга.

    Подобно многим физиологическим системам контроля, система управления дыханием организована как контур отрицательной обратной связи.

    Афферентация с различных рецепторных зон интегрируется в бульбарном дыхательном центре. Последний, в свою очередь, генерирует импульсацию к мотонейронам спинального отдела дыхательного центра, регулирующего сократительную активность дыхательной мускулатуры.

    Важная роль в регуляции внешнего дыхания отводится центрам варолиева моста, в частности, пневмотаксическому центру. Последний включает медиальное, парабрахиальное ядро и ядро Келликера. В парабрахиальном ядре находятся преимущественно инспираторные, экспираторные и фазопереходные нейроны. Ядро Келликера содержит инспираторные нейроны.

    Дыхательные нейроны моста участвуют в механизмах смены фаз дыхания, регулируют величину дыхательного объема.

    Непосредственными регуляторами сократительной способности дыхательных мышц являются спинальные мотонейроны, получающие информацию по нисходящим ретикулоспинальным путям от бульбарного дыхательного центра.

    Как известно, нейроны диафрагмального нерва расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Подавляющее количество волокон диафрагмального нерва являются аксонами α-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен диафрагмы, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

    Мотонейроны, иннервирующие межреберные мышцы, расположены в передних рогах спинного мозга на уровне TIV-TX, из них часть нейронов регулирует сокращения межреберных мышц, а другая часть – их позно-тоническую активность.

    Обращает на себя внимание тот факт, что активность спинальных мотонейронов, обеспечивающих регуляцию двигательной активности межреберных мышц и диафрагмы, в свою очередь, находится под контролем инспираторных нейронов спинного мозга, расположенных на уровне СI-CII вблизи латерального края промежуточной зоны серого вещества.

    В обеспечении дыхания, особенно в условиях патологии, участвуют мышцы брюшной стенки, получающие иннервацию от мотонейронов спинного мозга на уровне TIV-LIII.

    Двум фазам внешнего дыхания (вдоху и выдоху) соответствуют три фазы активности бульбарного дыхательного центра: инспирация, пассивная контролируемая экспирация и активная экспирация. Во время фазы инспирации диафрагма и наружные межреберные мышцы увеличивают силу сокращения, активируются мышцы гортани, расширяется голосовая щель, снижается сопротивление потоку воздуха. В постинспираторную фазу дыхания происходит медленное расслабление диафрагмы, сокращение мышц гортани, выход воздуха в окружающую среду.

    В фазе экспирации – экспираторный поток усиливается за счет сокращения внутренних межреберных мышц и мышц брюшной стенки.

    Рефлекторная регуляция дыхания обеспечивается за счет афферентной импульсации в бульбарный дыхательный центр с различных рецепторных зон. Мощной рефлексогенной зоной является слизистая оболочка полости носа, где расположены различные типы механорецепторов, в том числе ирритантные, растяжения, а также болевой чувствительности, обоняния.

    Возбуждение этих рецепторов возникает в момент каждого вдоха и приводит к формированию потока афферентной импульсации в ретикулярную формацию ствола мозга с последущей активацией бульбарного дыхательного центра, сосудодвигательного центра, гипоталамических и корковых структур мозга.

    Раздражение ирритантных рецепторов слизистой оболочки носа приводит к рефлекторному сужению бронхов, голосовой щели, остановке дыхания на выдохе, развитию брадикардии, а в ряде случаев прекращению сердечных сокращений и другим изменениям (тормозной тригемино-вагусный рефлекс Кречмера ).

    Слизистая трахеи и бронхов является слабой рефлексогенной зоной. В стенке крупных внелегочных бронхов и трахеи имеются высокопороговые, низкочувствительные медленноадаптирующиеся, быстроадаптирующиеся и промежуточные механорецепторы, в норме их роль в регуляции дыхания минимальна.

    Читайте также:  Способ заделки концов каната

    Чувствительность этих рецепторов возрастает при развитии воспалительного процесса в бронхолегочной системе инфекционной или аллергической природы, когда освобождаются медиаторы воспаления и аллергии: гистамин, кинины, лейкотриены, простагландины и др.. Возбудимость рецепторов трахеи и бронхов возрастает и в случае застойных явлений в малом кругу кровообращения, когда прежние объемы воздуха сильно растягивают стенки воздухоносных путей. Афферентация с рецепторов трахеи и бронхов направляется в бульбарный дыхательный центр по чувствительным волокнам n. Vagus, модулируя глубину и частоту дыхательных движений.

    Мощной рефлексогенной зоной является паренхима легких, обеспечивающая не только альвеолярное дыхание, но и рефлекторную регуляцию внешнего дыхания.

    Основные типы легочных вагусных афферентов включают: медленноадаптирующиеся рецепторы растяжения альвеол, быстроадаптирующиеся рецепторы, С-волокна.

    Многочисленные быстроадаптирующиеся рецепторы (БАР) находятся в эпителии внутрилегочных бронхов и бронхиол. Эти рецепторы наиболее чувствительны к следующим типам раздражителей: ирритантным воздействиям, повреждению паренхимы и механическому раздражению дыхательных путей. Возбуждение БАР возникает также при глубоком дыхании, легочной эмболии и капиллярной гипертензии. Афферентация с этих рецепторов распространяется по чувствительным маломиелинизированным волокнам n. Vagus в ретикулярную формацию ствола мозга и бульбарный дыхательный центр, вызывая бронхоконстрикцию, тахипноэ, развитие кашля и тахикардии. Возбуждение этих рецепторов может быть клинически значимым в патогенезе бронхиальной астмы и нарушениях реактивности дыхательных путей.

    По данным ряда авторов в паренхиме легких выделяют и БАР рецепторы спадения, реагирующие на спадение альвеол под воздействием внутрилегочных и внелегочных факторов. Афферентация с этих рецепторов поступает в бульбарный дыхательный центр по маломиелинизированным волокнам n. Vagus и обеспечивает развитие тахипноэ.

    Медленноадаптирующиеся рецепторы растяжения – важная группа механорецепторов c вагусной афферентацией, расположенных в гладких мышцах воздухоносных путей. Частота импульсов с этих рецепторов возрастает по мере растяжения альвеол вдыхаемым воздухом и распространяется по толстым миелинизированным α-волокнам n. Vagus в бульбарный дыхательный отдел, обеспечивая формирование рефлекса Геринга-Брейера. Последний контролирует частоту и глубину дыхания, имеет физиологическое значение при дыхательных объемах превышающих 1 л (у взрослых при физической нагрузке). Рефлекс Геринга-Брейера более важен для регуляции дыхательного акта у новорожденных, а также в условиях патологии как один из механизмов реализации инспираторной, экспираторной и смешанной одышек.

    Третьей группой легочных механорецепторов являются С-волокна – тонкие миелинизированные вагусные афференты. С – волокна оканчиваются в паренхиме легких, в бронхах и кровеносных сосудах, активируются экзогенными раздражителями и медиаторами альтерации. Активация С-волокон приводит к тахипноэ, брадикардии, гиперсекреции слизи. В состав С-волокон входят J-рецепторы, расположенные в альвеолярных перегородках в контакте с капиллярами (юкстакапиллярные рецепторы), чувствительные к интерстициальному отеку, легочной венозной гипертензии, микроэмболии, раздражающим газам и ингаляционным наркотическим веществам. Активация J-рецепторов вызывает закрытие гортани и апноэ, за которыми следует частое поверхностное дыхание, гипотензия и брадикардия.

    Важная роль в рефлекторной регуляции дыхания отводится проприорецепторам суставов грудной клетки, межреберных мышц, диафрагмы, сухожильным рецепторам. Недостаточное укорочение инспираторных или экспираторных мышц усиливает импульсацию от мышечных веретен, которая через α-мотонейроны повышает активность α-мотонейронов и дозирует таким образом мышечное усилие.

    В регуляции активности бульбарного дыхательного центра и внешнего дыхания принимает участие и афферентация с висцеральных рецепторов и рецепторов кожи, о чем свидетельствует развитие гипервентиляции легких при болевом и термическом раздражении.

    3.2. Механизмы гуморальной регуляции дыхания

    Важная роль в регуляции дыхания отводится хеморецепторам.

    Изменения газового состава крови (РаО2, РаСО2) влияют на активность дыхательного центра путем возбуждения хеморецепторов каротидных и аортальных телец (периферические рецепторы), а также хеморецепторов вентральной зоны продолговатого мозга и дорсального дыхательного ядра (центральные рецепторы). Периферические хеморецепторы (рис.5) обеспечивают регуляцию частоты дыхательных движений. Адекватным раздражителем для них является уменьшение РО2 артериальной крови, в меньшей степени – увеличение РСО2 и снижение рН. Периферические хеморецепторы расположены у бифуркации общих сонных артерий на внутреннюю и наружнюю. Несмотря на свой миниатюрный размер, каротидные тельца интенсивно кровоснабжаются (1,4-2 л/мин на 100 г ткани). Этот орган особенно чувствителен к колебаниям кислорода в артериальной крови. При Ра О2 в пределах 60-80 мм рт. ст. наблюдается слабое усиление вентиляции, при Ра О2 ниже 50 мм рт. ст. возникает выраженная гипервентиляция легких. Ра СО2 и рН крови потенцируют эффекты гипоксемии на артериальные хеморецепторы и не являются адекватными раздражителями для этих рецепторов. После двустороннего удаления каротидных телец гипоксический вентиляторный ответ у человека исчезает. При отсутствии хеморецепторной стимуляции, например, при глубокой гипокапнии, повреждении синокаротидной зоны (опухоли, коллагенозы, травмы) ритмогенез дыхания снижается и полностью прекращается.

    Рис. 5. Каротидное тельце: 1-хеморецепторные клетки; 2-поддерживающие клетки; 3-синаптические пузырьки; 4-чувствительные нервные окончания; 5-нервное волокно

    Центральные хемочувствительные клетки реагируют на отклонения РСО2 и [H+] во внеклеточной жидкости внутримозгового интерстициального пространства, регулируют глубину вдоха. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.

    Одной из причин высокой скорости вентиляторного ответа на гиперкапнию является легкость диффузии СО2 через барьерную систему кровь-головной мозг. Более того, повышенное РСО2 вызывает расширение сосудов, особенно церебральных, способствуя тем самым усилению диффузии СО2 через гемато-энцефалический барьер.

    Источник

    Оцените статью
    Разные способы