Способы прекращения горения и основные огнетушащие вещества
Существует четыре основных способа прекращения горения:
1. Охлаждение зоны горения или горючих веществ. Приемы прекращения горения и средства тушения пожаров:
— охлаждение горючих веществ (материалов) при воздействии на их поверхность огнетушащими средствами (сплошными или распыленной струи воды, пеной, снигоподибною углекислотой т.д.);
— охлаждение горючих материалов (например, горючих жидкостей, имеющих достаточно высокую температуру вспышки) путем их перемешивания;
— разборка горючих твердых материалов (например, деревянных штабелей или бревен) с последующим их охлаждением.
2. Изоляция горючих веществ или окислителя (воздуха) от зоны горения Приемы прекращения горения и средства тушения пожаров:
— создание изоляционного слоя путем нанесения на поверхность горючих веществ негорючих материалов (покрытие горючих веществ пеной, покрывалом из негорючего теплоизоляционного полотна, грубошерстной ткан жаркого или войлока; засыпания огнетушащим порошком или песком);
— создания изоляционного слоя с помощью взрыва;
— создание изоляционного слоя (разрыва) путем разборки горючих материалов, между веществом, уже горит, и веществом, еще не охвачена огнем;
— закрывания отверстий помещения, охваченного пожаром, с целью изоляции помещения от поступления свежего воздуха.
3. Разбавление воздуха или горючих веществ негорючими. Приемы прекращения горения и средства тушения пожаров:
— разбавление воздуха путем введения в него негорючих паров и газов (углекислого газа, азота, водяного пара и т.д.);
— разбавление горючих материалов путем воздействия на их поверхность негорючих веществ, легко испаряющихся или разлагаются (может достигаться теми же средствами, что и в предыдущем случае);
— разбавление горючих и легковоспламеняющихся гидрофильных жидкостей водой (например, спиртов)
4. химических торможение (ингибирование) реакции горения. Приемы прекращения горения и средства тушения пожаров:
— подача в зону горения галогеновуглеводнив (хладонов);
— подача на поверхность горючего вещества огнетушащих порошков.
Обычно механизма тушения пожара присущ комбинированный характер, при котором имеют место одновременно несколько способов прекращения процесса горения.
Вещества, обладающие физико-химическими свойствами, которые позволяют создать условия для прекращения горения называются огнетушащими веществами Они должны отвечать следующим требованиям: обладать высоким м эффектом тушения при относительно малой их расходу, быть дешевыми, доступными, простыми и безопасными в применении; не причинять вреда людям, животным, материалам, предметам и окружающей среду.
веществами, которые наиболее полно отвечают вышеперечисленным требованиям, а следовательно относятся к основным огнетушащих веществ, являются: вода (в разных видах), пена, инертные и негорючие газы, галогенопроизводные углевод дней, специальные порошки, песок Эти вещества осуществляют обычно комбинированное действие на процесс горения Так, вода охлаждает и изолирует (или разбавляет) источник горения; пена оказывает изолирующее и охлаждали на действие; порошки могут ингибировать процесс горения и изолировать твердые горючие вещества от зоны пламени Однако для любой огнетушащего вещества характерна основная (доминирующая) действие Например, вода Видеовызов Юэ, в основном, охлаждающим действием на процесс горения, пена — изолирующая, инертные и негорючие газы — розбавлювальну, галоген-углеводороды и порошки — ингибувальнихльну.
Наиболее распространенная, дешевая и легкодоступная огнетушащего вещества Она имеет большую теплоемкость, благодаря которой происходит интенсивное охлаждение вещества, горит Так 1 л воды при нагревании до 10 00 ° С поглощает около 4-Ю5 Дж теплоты, а при испарении — почти в пять раз больше Кроме того, она смачивает вещества и затрудняет тем самым доступ к ним кислорода воздуха Водяной пар, образующийся пр и тушении пожара водой в закрытых помещениях (1 л воды при испарении образует 1725 л пара), разбавляет воздуха и снижает концентрацию в нем кислорода (при концентрации водяного пара в воздухе 35% и выше объемом процесс горения становится невозможным) Для тушения пожара вода может применяться в различных видах: компактными струями; распыленной и тонкораспыленной, как водяной пар пара.
Вода в виде компактных струй используется для тушения пожаров, слишком развились; пожаров на высоте; когда необходимо подать воду на большие расстояния (до 50-70 м) или предоставить ей значительной ударной с силы для отрыва пламени от горящего материала, для создания водяных завес и охлаждения объектов, находящихся рядом с очагом пожара Такой способ тушения пожаров является простым и распространенным однако характеризуется значительными затратами води.
распыленных и тонкораспыленной (каплями менее 100 мкм) струями воды эффективно гасят твердые вещества и материалы, горючие и даже легковоспламеняющиеся жидкости Во время такого тушения пожаров значительно убыв шуються расхода воды \»минимально увлажняются и портятся материалы, осаждается дым, создаются наиболее благоприятные условия для испарения воды, а от так — повышение охлаждающей эффекта (при испарении 1 л воды поглощается около 22 o 106 Дж теплоты) и разбавления горючей среды Тушение распыленной и тонкораспыленной водой имеет ряд преимуществ (в первую очередь, уменьшаются затраты во ди) и поэтому в последние годы находит все более широкое применениесування.
Водяной пар пригодна для тушения пожаров в помещениях объемом до 500 м3 и небольших пожаров на открытых площадках и оборудовании Пар увлажняет материалы и предметы, а также разбавляет воздуха, снижая кая тем самым концентрацию кислорода в зоне горения Огнетушащее концентрация водяного пара в воздухе составляет примерно ЗО-35% за объемомераом.
Следует отметить, что как огнетушащего вещества вода имеет также свойства, ограничивающие область ее применения Так, водой нельзя тушить объекты, оборудование, находящиеся под напряжением, поскольку вода является электропроводной Вода вступает в химическую реакцию со щелочными, щелочноземельными металлами, их карбидами, в результате чего выделяется значительное количество тепла и горючих газов, что может привести к взрыву в и распространения пожара Нельзя тушить водой легковоспламеняющиеся жидкости, имеющие меньшую, чем у воды, плотность (бензин, керосин, толуол и др.,), поскольку они всплывают и продолжают гореть на поверхности воды увеличивая тем самым очаг пожара По пленке ЛВЖ, растекалась на поверхности воды, пожар может распространиться на значительное расстояние Кроме того, вода может вызвать порчу, поэтому ее нельзя использовал ать для тушения ценного оборудования и материалов (например, в вычислительных центрах, библиотеках, музеях, картинных галереях и т.п. тощо).
Широко применяется для тушения легковоспламеняющихся жидкостей ее огнетушащее действие заключается в том, что покрывая поверхность вещества, которая горит, она ограничивает доступ горючих газов и паров в зону горения, изолирует вещество от зоны горения и охлаждает наиболее нагретый верхний слой вещества Для непрерывного подачи пены при тушении крупных пожаров используют специальные пенообразующие аппараты — стволы эт итряно-пенные (СПП), пено-генераторы (ГПС) На практике применяют два вида пены: химическую и воздушно-механическойчну.
Химическую пену получают при взаимодействии щелочного и кислотного растворов в присутствии пенообразователя Такая пена состоит из 80% углекислого газа, 19,7% воды и 0,3% пенообразующие вещества ее плотностью стина составляет около 0,2 г/см3, кратность — 5 (отношение объема пены к объему раствора, из которого она образована), устойчивость — до 40 мин В связи с высокой стоимостью компонентов, сложностью получения и организации пожаротушения применения химической пены в настоящее время ограничиваетсяься.
Воздушно-механическая пена образуется при механическом смешении воздуха, воды и пенообразователя Доли этих компонентов составляют соответственно 90, 9,4-9,8 и 0,2-0,6% Воздушно-механическая пена бывает низ зькои (до 10), средней (10-200) и высокой (свыше 200) кратности ее устойчивость зависит от пенообразователя и составляет до 20 мин, но с увеличением кратности она уменьшаетсяься.
Инертные и негорючие газы
Главным образом, углекислый газ и азот, снижают концентрацию кислорода в очаге пожара и тормозят интенсивность горения огнетушащие концентрации этих газов при тушении пожара в закрытом помещении в танов 30-35% от объема помещения Инертные и негорючие газы применяются, как правило, для тушения легковоспламеняющихся и горючих жидкостей, твердых веществ и материалов, оборудования под напряжением, а так ож в случаях, когда использование воды или пены не дает действенного эффекта или оно является нежелательным учитывая значительные убытки (в музеях, картинных галереях, архивах, помещениях с компьютерной техникой и т.д.о).
Наибольший эффект достигается при тушении инертными и негорючими газами пожаров в замкнутых объемах, однако при этом необходимо учитывать вероятность токсического действия на людей углекислого газа
Огнегасительное действие галогеновуглеводнив (хладонов)
Заключается в химическом торможении реакций горения путем разрыва цепных реакций окисления, поэтому их называют ингибиторами, или антикатализатором По сравнению с углекислым газом они более эффектив ективно и благодаря смачиванию могут применяться для тушения тлеющих веществ и материалев.
Ниже приведены галогенопроизводные углеводородов и их огнетушащие концентрации в процентах по объему: бромистый метилен — 2,4%; йодистый метилен — 2,7%; тетрафтордиброметан — 7,5%; бромистый этил — 8,6%; дихлормонофторметан — 9,5% К недостаткам галогеновуглеводнив можно отнести их высокую коррозионную активность, токсичность и стоимость При использовании галогеновуглеводнив для тушения пожаров и необходимо соблюдать правила безопасности частности, приведения в действие хладонов установок пожаротушения допускается только после эвакуации людей из помещенияння.
представляют собой измельченные минеральные соли с различными добавками, которые противодействуют слеживанию и образованию комков Они характеризуются высокой огнетушащей способностью и универсальностью относительно сферы примен ния Огнетушащие порошки можно использовать для различных способов пожаротушения, в том числе для ингибирования и прекращения горения взрывоом.
Различают порошки общего и специального назначения Основным компонентом порошка ПСБ является бикарбонат натрия (техническая сода) ПФ — диамоний фосфат; ПС — карбонат натрия СН — силикагель, насыщенный хладонам.
Выбор огнетушащего вещества зависит от класса пожара В табл 412 приведена классификация пожаров в соответствии с международным стандартом ISO № 3941-77 и ГОСТ 27331-87, а также рекомендованы огнетушащие ве инини.
Источник
Основные способы прекращения горения огнетушащие вещества
Основы прекращения горения на пожаре. Огнетушащие вещества.
С точки зрения пожарной тактики, тушение пожара – это комплекс управленческих решений и оперативно-тактических действий, направленных на обеспечение безопасности людей, животных, спасение материальных ценностей и ликвидацию горения.
Процесс тушения пожара условно принято делить на два периода: первый – до наступления момента локализации, второй – после этого момента, т. е. когда пожар остановлен, ограничен в каких-то пределах.
Пожар считается локализованным, когда распространение огня прекращено, отсутствуют угроза жизни людям, животным и угроза взрыва, созданы условия для его ликвидации.
Условия и способы прекращения горения.
С уменьшением тепловыделения или с уменьшением теплоотдачи снижается температура и скорость горения. При введении в зону горения огнетушащих веществ температура может достигнуть значения, при котором горение прекращается. Минимальная температура горения, ниже которой скорость теплоотвода превышает скорость тепловыделения и горение прекращается, называется температурой потухания. Температура потухания значительно выше температуры самовоспламенения, следовательно, для прекращения горения достаточно понизить температуру зоны реакции ниже температуры потухания, увеличивая интенсивность теплоотвода или уменьшая скорость тепловыделения. Так, если изменить концентрацию кислорода в воздухе, добавив к нему негорючий газ, то скорость выделения теплоты будет уменьшаться и температура горения понизится. При определенной концентрации негорючего газа температура горения опустится ниже температуры потухания и горение прекратится.
Снизить температуру горения и прекратить горение можно как увеличением скорости теплоотвода, так и уменьшением скорости тепловыделения.
Этого можно достигнуть:
- воздействием на поверхность горящих материалов охлаждающими ОТВ;
- созданием в зоне горения или вокруг нее негорючей газовой или паровой среды;
- созданием между зоной горения и горючим материалом или воздухом изолирующего слоя из ОТВ.
Схема прекращения горения
Способы прекращения горения
1. Охлаждение:
- Сплошными струями воды;
- Распыленными струями воды;
- Перемешиванием горючих веществ.
2. Разбавление:
- Струями тонкораспыленной воды;
- Газоводяными струями;
- Горючих жидкостей водой;
- Негорючими парами и газами.
3. Изоляция:
- Слоем пены;
- Слоем продуктов взрыва ВВ;
- Созданием разрыва в горючем веществе;
- Слоем огнетушащего порошка;
- Огнезащитными полосами.
4. Химическое торможение реакции:
- Огнетушащим порошком;
- Галоидопроизводным углеводородом.
Каждый из способов прекращения горения можно выполнить различными приемами или их сочетанием. Например, создание изолирующего слоя на горящей поверхности легковоспламеняющейся жидкости может быть достигнуто подачей пены через слой горючего, с помощью пеноподъемников, навесными струями и т. п.
Огнетушащие вещества охлаждения
Вода – основное ОТВ охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью [4 187 Дж/(кг/град), 1 ккал/(кг/град)] при нормальных условиях. При попадании на горящее вещество вода частично испаряется и превращается в пар. При испарении 1 л воды образуется 1 700 л пара, которым кислород вытесняется из зоны пожара. Вода, имея высокую теплоту парообразования [2 236 кДж/кг (534 ккал/кг)], отнимает от горящих материалов и продуктов горения большое количество теплоты. Вода обладает высокой термической стойкостью; ее пары только при температуре выше 1 700 °С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твердых материалов (древесины, пластмасс, каучука и др.) безопасно, так как их температура горения не превышает 1 300 °С. Вода не вступает в реакцию почти со всеми твердыми горючими веществами, за исключением щелочных и щелочноземельных металлов (калия, натрия, кальция, магния и др.) и некоторых других веществ:
Вещество или материал | Результат воздействия воды |
Азид свинца | Взрывается при увеличении влажности до 30 % |
Алюминий, магний, цинк | При горении разлагают воду на водород и кислород |
Гидриды щелочных и щелочноземельных металлов | Выделяют водород |
Гремучая ртуть | Взрывается от удара струи |
Калий, кальций, натрий, рубидий, цезий металлические | Реагируют с водой, выделяют водород |
Карбиды алюминия, бария, кальция | Разлагаются с выделением горючих газов |
Карбиды щелочных металлов | Взрываются |
Кальций, натрий фосфористые | Выделяют самовоспламеняющийся на воздухе фосфористый водород |
Нитроглицерин | Взрывается от удара струи |
Селитра | Попадание воды в расплав селитры вызывает сильный взрывообразный выброс и усиление горения |
Серный ангидрид | Взрывообразный выброс |
Сесквихлорид | Взрывается |
Силаны | Выделяют самовоспламеняющийся на воздухе гидрид кремния |
Термит, электрон | Разлагает воду на водород и кислород |
Титан и его сплавы | Разлагает воду на водород и кислород |
Триэтилалюминий | Разлагает воду на водород и кислород |
Хлорсульфоновая кислота | Взрывается |
Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения, вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Чтобы избежать ненужных потерь, распыленную воду применяют в основном при сравнительно небольшой высоте пламени, когда можно подать ее между пламенем и нагретой поверхностью (например, при горении подшивки перекрытий, стен и перегородок, обрешетки крыши, волокнистых веществ, пыли, темных нефтепродуктов и др.).
Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок а также для осаждения дыма. В зависимости от вида горящих материалов используют распыленную воду различной степени дисперсности. При тушении пожаров твердых материалов, смазочных масел применяют струи со средним диаметром капель около 1 мм; при тушении горящих спиртов, ацетона, метанола и некоторых других горючих жидкостей – распыленные струи, состоящие из капель диаметром 0,2–0,4 мм.
Сплошные струи используют при тушении наружных и открытых внутренних пожаров, когда необходимо подать большое количество воды на значительное расстояние или если воде необходимо придать ударную силу. (Например, при тушении газонефтяных фонтанов, открытых пожаров, а также пожаров в зданиях больших объемов, когда близко подойти к очагу горения невозможно; при охлаждении с большого расстояния соседних объектов, металлических конструкций, резервуаров, технологических аппаратов).
Сплошные струи нельзя применять там, где может быть мучная, угольная и другая пыль, а также при горении жидкостей в резервуарах. Для равномерного охлаждения площади горения сплошную струю воды перемещают с одного участка на другой. Когда с увлажненного горючего вещества сбито пламя и горение прекращено, струю переводят в другое место. Как ОТВ, вода плохо смачивает твердые материалы из-за высокого поверхностного натяжения (72,8–103 Дж/м2), что препятствует быстрому распределению ее по поверхности, прониканию в глубь горящих твердых материалов и замедляет охлаждение. Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Оптимальное время смачивания 7–9 с. Применение растворов смачивателей позволяет уменьшить расход воды на 35–50 %, что обеспечивает ликвидацию горения одним и тем же объемом ОТВ на большей площади.
Твердый диоксид углерода (углекислота), как и вода, может быстро отнять теплоту от нагретого поверхностного слоя горящего вещества. При температуре −79 °С он представляет собой мелкокристаллическую массу плотностью 1,53 кг/м3. Такая масса образуется при переходе диоксида углерода из жидкой в газообразную фазу при быстром увеличении объема. Жидкий диоксид углерода в результате расширения переходит в твердое состояние и выбрасывается в виде хлопьев, похожих на снежные, с температурой −78,5 °С. Под влиянием теплоты, выделяющейся на пожаре, твердый диоксид углерода, минуя жидкую фазу, превращается в газ. При этом он является средством не только охлаждения, но и разбавления горящих веществ. Теплота испарения твердого диоксида углерода значительно меньше, чем воды – 0,57103 кДж/кг (136,9 ккал/кг), однако, из-за большой разницы температур твердого диоксида углерода и нагретой поверхности, поверхность охлаждается гораздо быстрее, чем при применении воды. Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением магния и его сплавов, металлического натрия и калия. Он неэлектропроводен и не взаимодействует с горючими веществами и материалами, поэтому его применяют при тушении электроустановок, двигателей и моторов, а также при пожарах в архивах, музеях, выставках и т.д. Подают твердый диоксид углерода из огнетушителей, передвижных и стационарных установок.
Огнетушащие вещества изоляции
К ОТВ, оказывающим изолирующее действие относятся пена, огнетушащие порошки, негорючие сыпучие вещества (песок, земля, флюсы, графит и др.), листовые материалы (войлочные, асбестовые, брезентовые покрывала, щиты). В некоторых случаях, например при тушении сероуглерода, в качестве изолирующего вещества может быть использована вода.
Пены
Пена – наиболее эффективное и широко применяемое ОТВ изолирующего действия, представляет собой коллоидную систему из жидких пузырьков, наполненных газом. Пленка пузырьков содержит раствор ПАВ в воде с различными стабилизирующими добавками. Пены подразделяются на воздушно-механическую и химическую. В настоящее время в практике пожаротушения в основном применяют воздушно-механическую пену (ВМП). Для ее получения используют различные пенообразователи. Воздушно-механическую пену получают смешением водных растворов пенообразователей с воздухом в пропорциях от 1÷3 до 1÷1 000 и более в специальных стволах (генераторах).
Изолирующее свойство пены – способность препятствовать испарению горючего вещества и прониканию через слой пены паров газов и различных излучений. Изолирующие свойства пены зависят от ее стойкости вязкости и дисперсности.
Низкократная и среднекратная воздушно-механическая пена на поверхности горючих жидкостей обладает изолирующей способностью в пределах 1,5–2,5 мин при толщине изолирующего слоя 0,1–1,0 м. Низкократными пенами тушат в основном горящие поверхности. Они хорошо удерживаются и растекаются по поверхности, препятствуют прорыву горючих паров, обладают значительным охлаждающим действием. Низкократную пену используют для тушения пожаров на складах древесины, так как ее можно подать струей значительной длины; кроме того, она хорошо проникает через неплотности и удерживается на поверхности, обладает высокими изолирующими и охлаждающими свойствами.
Высокократную пену, а также пену средней кратности применяют для объемного тушения, вытеснения дыма, изоляции отдельных объектов от действия теплоты и газовых потоков (в подвалах жилых и производственных зданий, в пустотах перекрытий, в сушильных камерах и вентиляционных системах и т. п.).
Пена средней кратности является основным средством тушения пожаров нефти и нефтепродуктов в резервуарах и разлитых на открытой поверхности. Воздушно-механическую пену часто применяют в сочетании с огнетушащими порошковыми составами, нерастворимыми в воде. Огнетушащие порошковые составы высокоэффективны для ликвидации пламенного горения, но почти не охлаждают горящую поверхность. Пена компенсирует этот недостаток и дополнительно изолирует поверхность.
Пены – достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако, более электропроводна, чем вода, входящая в состав пены.
Классификация пенообразователей
Пенообразователи и пены различаются по химической природе поверхностно-активного вещества, способу образования, назначению, структуре.
По природе основного поверхностно-активного вещества пенообразователи делятся на:
- протеиновые (белковые);
- синтетические углеводородные;
- фторсодержащие.
По способу образования пенообразователи делятся на:
- химические (конденсационные);
- воздушно-механические;
- барботажные;
- струйные.
По назначению пенообразователи различают:
- общего назначения;
- целевого назначения;
- пленкообразующие.
По структуре пены подразделяются на высокодисперсные и грубодисперсные.
- По кратности пены бывают:
- низкой кратности и пеноэмульсии;
- средней кратности;
- высокой кратности.
Огнетушащие порошки
Порошки используются для тушения пожаров большинства классов. Порошками можно тушить любые известные на сегодняшний день вещества и материалы. Универсальным считается порошок для тушения пожаров классов А, В, С, Е. Порошки, предназначенные для тушения только пожаров классов В, С, Е или Д, называются специальными.
К отечественным огнетушащим порошкам общего назначения относят:
ПСБ-ЗМ для тушения пожаров классов В, С и электроустановок под напряжением (активная основа – бикарбонат натрия);
П2-АПМ для тушения пожаров классов А, В, С и электроустановок под напряжением (активная основа — аммофос);
порошок огнетушащий ПИРАНТ-А для тушения пожаров классов А, В, С и электроустановок под напряжением(активная основа – фосфаты и сульфат аммония);
порошок «Вексон-АВС» предназначен для тушения пожаров классов А, В, С и электроустановок под напряжением;
порошки «Феникс АВС-40» и «Феникс АВС-70» предназначены для тушения пожаров классов А, В, С и электроустановок под напряжением;
«Феникс АВС-70», являясь порошком повышенной эффективности, специально разработан для снаряжения автоматических модулей порошкового пожаротушения.
Примером огнетушащего порошка специального назначения является порошок ПХК, применяемый преимущественно Минатомэнерго для тушения пожаров классов В, С, Д и электроустановок. В последние годы в России сертифицированы зарубежные порошки, которые имеют более широкий диапазон эксплуатационных температур: от +85 до −60 °С. Изготовители рекомендуют их для тушения пожаров электроустановок с напряжением до 400 кВ.
Ликвидация горения порошковыми составами осуществляется на основе взаимодействия следующих факторов:
разбавление горючей среды газообразными продуктами разложения порошка или непосредственно порошковым облаком;
охлаждение зоны горения за счет затрат тепла на нагрев частиц порошка, их частичное испарение и разложение в пламени;
эффект огнепреграждения по аналогии с сетчатыми, гравийными и подобными огнепреградителями;
ингибирование химических реакций, обусловливающих развитие процесса горения, газообразными продуктами испарения и разложения порошков;
гетерогенный обрыв реакционных цепей на поверхности частиц порошка или твердых продуктов его разложения.
Огнетушащие вещества разбавления
Огнетушащие вещества разбавления понижают концентрацию реагирующих веществ ниже пределов, необходимых для горения. В результате уменьшается скорость реакции горения, скорость выделения тепла, снижается температура горения. При тушении пожаров разбавляют воздух, поддерживающий горение, или горючее вещество, поступающее в зону горения. Воздух избавляют в относительно замкнутых помещениях (сушильных камерах, трюмах судов и т. п.), а также при горении отдельных установок или жидкостей на небольшой площади при свободном доступе воздуха.
К огнетушащим веществам разбавления относятся: диоксид углерода, азот, тонкораспыленная вода, водяной пар, хладоны и др. Огнетушащая концентрация – это объемная доля ОТВ в воздухе, прекращающая горение.
Наиболее распространенные средства разбавления – диоксид углерода, водяной пар, азот и тонкораспыленная вода, перегретая вода.
Газовые огнетушащие составы условно делятся на нейтральные (негорючие) газы и химически активные ингибиторы.
К нейтральным газам относятся инертные газы аргон, гелий, а также азот и двуокись углерода.
К химически активным, «хладонам» или «фреонам», относятся органические соединения с низкой теплотой испарения, в молекуле которых содержатся атомы галоидов, таких как бром или хлор.
Аэрозолеобразующие огнетушащие составы
Аэрозолеобразующие огнетушащие составы представляют собой твердотопливные или пиротехнические композиции. Их особенность в том, что они способны гореть без доступа воздуха. Образующиеся при горении газы состоят из высокодисперсных частиц, солей и окислов щелочных металлов, обладающих высокой огнетушащей способностью по отношению к углеводородному пламени.
Механизм действия огнетушащего аэрозоля во многом аналогичен механизму действия огнетушащих порошков на основе щелочных металлов. Более высокая его эффективность обусловлена большей дисперсностью частиц и некоторым снижением концентрации кислорода в защищаемом помещении.
Тушение аэрозолями осуществляется объемным способом и рекомендуется применять при пожарах класса А и класса В в помещениях с воздушной средой, атмосферном давлении и имеющих негерметичность помещения до 0,5 %. Применяется также для тушения электроустановок под напряжением до 1 000 В. Преимущественная область применения – моторные и багажные отсеки автомобилей, помещения с наличием легковоспламеняющихся веществ (в том числе, ЛВЖ и ГЖ), горючих газов, электрические установки, хранилища материальных ценностей.
Применение аэрозолей неэффективно для материалов, горение которых происходит в тлеющем режиме, или способных гореть без доступа воздуха, порошков металлов. Запрещается их применение в помещениях, которые не могут быть покинутыми людьми до начала применения аэрозолеобразующего состава.
Источник