Основные способы представления математических зависимостей между данными 11 класс

Основные способы представления математических зависимостей между данными 11 класс

Урок 38. Математическая модель. Основные способы представления математических зависимостей между данными. Понятия: величина, имя величины, тип величины, значение величины

Моделирование зависимостей между величинами (§17)

Величины и зависимости между ними

Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:

1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.

Рассмотрим различные методы представления зависимостей.

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.

С понятием величины вы уже встречались в курсе информатики 7-9 классов. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.

Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин.

Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.

Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14159. Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.

Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных . Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический . Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, и рассматриваться будут только величины числового типа.

А теперь вернемся к примерам 1-3 (см. начало параграфа) и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1 ) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2 ) будем считать константой .

2 ) Р (н/м 2 ) — давление газа (в единицах СИ давление измеряется в ньютонах на квадратный метр); t ( 0 С) — температура газа. Давление при нуле градусовР0 будем считать константой для данного газа.

3 ) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С (мг/м 3 ) . Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1 000 жителей данного города — Р (бол./тыс.).

Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным , поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.

Математические модели

Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.

Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.

В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.

В еще более сложных задачах (пример 3 — одна из них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.

Табличные и графические модели

Рассмотрим примеры двух других, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график (рис. 3.2).

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости времени от высоты, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете почему?)

В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 3.2. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.

Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.

Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.

Вопросы и задания

1. а) Какие вам известны формы представления зависимостей между величинами?

б) Что такое математическая модель?

в) Может ли математическая модель включать в себя только константы?

2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками какого-то объекта или процесса.

3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.

Источник

Моделирование зависимостей между величинами
план-конспект урока по информатике и икт (11 класс)

Цель урока:

Учащиеся должны знать: понятие модели; понятие информационной модели; этапы построения компьютерной информационной модели; моделирование зависимостей между величинами.

Учащиеся должны уметь: определять тип модели; моделировать зависимость между величинами.

Задачи:

Образовательные – повторить с учащимися, что такое компьютерное информационное моделирование, что такое модель, информационная модель, какие типы моделей существуют; дать учащимся понятие моделирования зависимостей между величинами;

Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке посредством анализа демонстрационных примеров, способность к обобщению, быстрому переключению, способствовать формированию навыков коллективной и самостоятельной работы, умения чётко и ясно излагать свои мысли;

Воспитательные – способствовать развитию смысловой памяти, умений анализировать, сравнивать, отбирать материал, формированию поисковой самостоятельности и коммуникативных качеств учащихся.

Скачать:

Вложение Размер
Моделирование зависимостей между величинами 133 КБ
Моделирование зависимостей между величинами 361.24 КБ

Предварительный просмотр:

Урок с применением технологий:

Тема урока: «Моделирование зависимостей между величинами»

Учащиеся должны знать: понятие модели; понятие информационной модели; этапы построения компьютерной информационной модели; моделирование зависимостей между величинами.

Учащиеся должны уметь: определять тип модели; моделировать зависимость между величинами.

Образовательные – повторить с учащимися, что такое компьютерное информационное моделирование, что такое модель, информационная модель, какие типы моделей существуют; дать учащимся понятие моделирования зависимостей между величинами;

Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке посредством анализа демонстрационных примеров, способность к обобщению, быстрому переключению, способствовать формированию навыков коллективной и самостоятельной работы, умения чётко и ясно излагать свои мысли;

Воспитательные – способствовать развитию смысловой памяти, умений анализировать, сравнивать, отбирать материал, формированию поисковой самостоятельности и коммуникативных качеств учащихся.

  1. Организационный момент.
  2. Проверка домашнего задания. Устный опрос по теме «Компьютерное информационное моделирование».
  • Дайте определение понятия «модель». Что такое моделирование?
  • Какие виды объектов моделирования вы знаете? Приведите примеры.
  • Назовите причины, по которым прибегают к построению модели. Приведите примеры.
  • Что такое натурное моделирование? Приведите примеры.
  • Что такое информационное моделирование? Приведите примеры.
  • Что такое компьютерная информационная модель? Назовите этапы её построения.
  1. Новая тема. «Моделирование зависимостей между величинами».

Величины и зависимости между ними. (слайд 2-6)

Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:

1) время падения тела на землю зависит о т его первоначальной высоты;

2) давление газа в баллоне зависит от е г о температуры;

3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.

Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами .

Рассмотрим различные методы представления зависимостей.

Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.

Со всякой величиной связаны три основных свойства: имя, значение, тип.

Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например,: ФАМИЛИЯ, ВЕС, ОЦЕНКА и

т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.

Если значение величины не изменяется, то она называется постоянной величиной или константой . Пример константы – число Пифагора π = 3,14159… Величина, значение которой может меняться, называется переменной . Например, в описании процесса падения тела переменными величинами являются высота Н и

время падения t.

Третьим свойством величины является ее тип . С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, и рассматриваться будут только величины числового типа.

А теперь вернемся к примерам и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.

1) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2 ) будем считать константой.

2) Р (н/м 2 ) — давление газа (в единицах СИ давление измеряется в ньютонах на квадратный метр); t ( 0 С) – температура газа. Давление при нуле градусов Р 0 будем считать константой для данного газа.

3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) – С (мг/м 3 ). Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1 000 жителей данного города — Р (бол. /тыс.).

Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет

значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разны м, поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.

Математические модели. (слайд 7)

Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.

Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ним и, представленных на языке математики.

Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.

В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.

В еще более сложных задачах (пример 3 — одна и з них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.

Табличные и графические модели. (слайд 8-10)

Рассмотрим примеры двух други х, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с

6 -метровой высоты, 9 — метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Источник

Читайте также:  Способы психологической защиты учебник
Оцените статью
Разные способы