Основные способы получения углерода

№ 6 Углерод


История открытия:

Углерод известен с глубокой древности. В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А.Лавуазье (1772) по изучения горения алмаза на воздухе и исследований С.Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод как химический элемент был признан только в 1789 А.Лавуазье. В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом «углетвор» (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод. Латинское название сarboneum углерод получил от сarbo — уголь.

Получение:

Неполное сжигание метана : СН4 + О2 = С + 2Н2О (сажа);
Сухая перегонка древесины, каменного угля (древесный уголь, кокс).

Физические свойства:

Известны несколько кристаллических модификаций углерода: графит,алмаз, карбин, графен.
Графит — серо-черная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1кгс/см 2 ) графит термодинамически стабилен. При атмосферном давлении и температуре около 3700°С графит возгоняется. Жидкий углерод может быть получен при давлении выше 10,5 Мн/м 2 (1051 кгс/см2) и температурах выше 3700°С. Cтруктура мелкокристаллического графита лежит в основе строения «аморфного» углерода, который не представляет собой самостоятельной модификации (кокс, сажа, древесный уголь). Нагревание некоторых разновидностей «аморфного» углерода выше 1500-1600°С без доступа воздуха вызывает их превращение в графит. Физические свойства «аморфного» углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоемкость, теплопроводность и электропроводность «аморфного» углерода всегда выше, чем графита.
Алмаз — очень твердое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решетку: а=3,560. При комнатной температуре и нормальном давлении алмаз метастабилен. Заметное превращение алмаза в графит наблюдается при температурах выше 1400°С в вакууме или в инертной атмосфере.
Карбин получен искусственно. Он представляет собой мелкокристаллический порошок черного цвета (плотность 1,9 — 2 г/см 3 ). Построен из длинных цепочек атомов С, уложенных параллельно друг другу.
Графен — мономолекулярный слой (слой, толщиной в одну молекулу) атомов углерода, которые плотно упакованы в двухмерную решетку, по форме напоминающую пчелиные соты. Графен был впервые получен и исследован Александром Геймом и Константином Новоселовым, которые стали за это открытие лауреатами Нобелевской премии по физике 2010 года.

Химические свойства:

Углерод малоактивен, на холоду реагирует только с F2 (образуя CF4). При нагревании реагирует со многими неметаллами и сложными веществами, проявляя восстановительные свойства:
CO2 + C = CO выше 900°С
2H2O + C = CO2 + H2 выше 1000°С или H2O + C = CO + H2 выше 1200°С
CuO + C = Cu + CO
HNO3 + 3C = 3 CO2 + 4 NO + 2 H2O
Слабые окислительные свойства проявляются в реакциях с металлами, водородом
Ca + С = CaС2 карбид кальция
Si + С = CSi карборунд
CaO + C = CaC2 + CO

Важнейшие соединения:

Оксиды СО, СО2
Угольная кислота Н2СО3, карбонаты кальция (мел, мрамор, кальцит, известняк),
Карбиды СаС2
Органические вещества , например углеводороды, белки, жиры

Применение:

Графит используется в карандашной промышленности, также исполузется как смазка при особо высоких или низких температурах. Алмаз используется в качестве абразивного материала, драгоценных камней в ювелирных украшениях . Алмазным напылением обладают шлифовальные насадки бормашин. В фармакологии и медицине используются соединения углерода — производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и др. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) — для лечения кожных заболеваний; радиоактивные изотопы углерода — для научных исследований (радиоуглеродный анализ). Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) — один из важнейших источников энергии для человечества.

Читайте также:  Способ оценки мпз по средней стоимости что это такое

Источник

Углерод

Углерод

Углерод — неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец — металлы.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 2 :

  • C — 2s 2 2p 2
  • Si — 3s 2 3p 2
  • Ge — 4s 2 4p 2
  • Sn — 5s 2 5p 2
  • Pb — 6s 2 6p 2

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций — графит, алмаз, фуллерен
  • MgCO3 — магнезит
  • CaCO3 — кальцит (мел, мрамор)
  • CaCO3*MgCO3 — доломит

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз — нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

Химические свойства

При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

2С + O2 → (t) 2CO (угарный газ — продукт неполного окисления углерода, образуется при недостатке кислорода)

С + O2 → (t) CO2 (углекислый газ — продукт полного окисления углерода, образуется при достаточном количестве кислорода)

Реакции с металлами

При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

Ca + C → CaC2 (карбид кальция, СО углерода = -1)

Al + C → Al4C3 (карбид алюминий, СО углерода -4)

Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

Углерод — хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

SiO2 + C → (t) Si + CO

Может восстановить и собственный оксид:

Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца — крайне важна в промышленности:

Реакции с кислотами

В реакциях с кислотами углерод проявляет себя как восстановитель:

Оксид углерода II — СO

Оксид углерода II — продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

FeO + CO → Fe + CO2

Образование карбонилов — чрезвычайно токсичных веществ.

Оксид углерода IV — CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

Углекислый газ образуется при горении органических веществ:

    Реакция с водой

В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

Реакции с основными оксидами и основаниями

В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние — карбонаты (при избытке основания), кислые — гидрокарбонаты (при избытке кислотного оксида).

Читайте также:  Способы замораживания рыбы товароведение

2KOH + CO2 → K2CO3 + H2O (соотношение основание — кислотный оксид 2:1)

KOH + CO2 → KHCO3 (соотношение основание — кислотный оксид 1:1)

При нагревании способен окислять металлы до их оксидов.

Zn + CO2 → (t) ZnO + CO

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается «закипанием» — появлением пузырьков бесцветного газа без запаха.

Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа — помутнение исчезало.

Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

Чтобы сделать из средней соли (карбоната) — кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 — ошибка. Ее следует записать в виде воды и углекислого газа.

Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

Нагревание солей угольной кислоты

При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты — на карбонат металла, углекислый газ и воду.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Углерод (C)

Углерод в виде древесного угля известен человеку с незапамятных времен, поэтому, о дате его открытия говорить не имеет смысла. Собственно свое название «углерод» получил в 1787 году, когда была опубликована книга «Метод химической номенклатуры», в которой вместо французского названия «чистый уголь» (charbone pur) появился термин «углерод» (carbone).

Углерод обладает уникальной способностью образовывать полимерные цепочки неограниченной длины, порождая тем самым огромный класс соединений, изучением которых занимается отдельный раздел химии — органическая химия. Органические соединения углерода лежат в основе земной жизни, поэтому, о важности углерода, как химического элемента, говорить не имеет смысла — он основа жизни на Земле.

Сейчас рассмотрим углерод с точки зрения неорганической химии.


Рис. Строение атома углерода.

Электронная конфигурация углерода — 1s 2 2s 2 2p 2 (см. Электронная структура атомов). На внешнем энергетическом уровне у углерода находятся 4 электрона: 2 спаренных на s-подуровне + 2 неспаренных на p-орбиталях. При переходе атома углерода в возбужденное состояние (требует энергетических затрат) один электрон с s-подуровня «покидает» свою пару и переходит на p-подуровень, где имеется одна свободная орбиталь. Т. о., в возбужденном состоянии электронная конфигурация атома углерода приобретает следующий вид: 1s 2 2s 1 2p 3 .


Рис. Переход атома углерода в возбужденное состояние.

Такая «рокировка» существенно расширяет валентные возможности атомов углерода, которые могут принимать степень окисления от +4 (в соединениях с активными неметаллами) до -4 (в соединениях с металлами).

В невозбужденном состоянии атом углерода в соединениях имеет валентность 2, например, CO(II), а в возбужденном — 4: CO2(IV).

«Уникальность» атома углерода заключается в том, что на его внешнем энергетическом уровне находятся 4 электрона, поэтому, для завершения уровня (к чему, собственно, стремятся атомы любого химического элемента) он может с одинаковым «успехом», как отдавать, так и присоединять электроны с образованием ковалентных связей (см. Ковалентная связь).

Углерод, как простое вещество

Как простое вещество углерод может находиться в виде нескольких аллотропных модификаций:

Алмаз


Рис. Кристаллическая решетка алмаза.

Свойства алмаза:

  • бесцветное кристаллическое вещество;
  • самое твердое вещество в природе;
  • обладает сильным преломляющим эффектом;
  • плохо проводит тепло и электричество.
Читайте также:  Способ быстро снизить сахар


Рис. Тетраэдр алмаза.

Исключительная твердость алмаза объясняется строением его кристаллической решетки, которая имеет форму тетраэдра — в центре тетраэдра находится атом углерода, который связан равноценно прочными связями с четырьмя соседними атомами, образующими вершины тетраэдра (см. рисунок выше). Такая «конструкция» в свою очередь связана с соседними тетраэдрами.

Графит


Рис. Кристаллическая решетка графита.

Свойства графита:

  • мягкое кристаллическое вещество серого цвета слоистой структуры;
  • обладает металлическим блеском;
  • хорошо проводит электричество.

В графите атомы углерода образуют правильные шестиугольники, лежащие в одной плоскости, организованные в бесконечные слои.

В графите химические связи между соседними атомами углерода образованы за счет трех валентных электронов каждого атома (изображены синим цветом на рисунке ниже), при этом четвертый электрон (изображен красным цветом) каждого атома углерода, расположенный на p-орбитали, лежащей перпендикулярно плоскости слоя графита, не участвует в образовании ковалентных связей в плоскости слоя. Его «предназначение» заключается в другом — взаимодействуя со своим «собратом», лежащим в соседнем слое, он обеспечивает связь между слоями графита, а высокая подвижность p-электронов обусловливает хорошую электропроводность графита.


Рис. Распределение орбиталей атома углерода в графите.

Фуллерен


Рис. Кристаллическая решетка фуллерена.

Свойства фуллерена:

  • молекула фуллерена представляет собой совокупность атомов углерода, замкнутых в полые сферы типа футбольного мяча;
  • это мелкокристаллическое вещество желто-оранжевого цвета;
  • температура плавления = 500-600°C;
  • полупроводник;
  • входит в состав минерала шунгита.

Карбин

Свойства карбина:

  • инертное вещество черного цвета;
  • состоит из полимерных линейных молекул, в которых атомы связаны чередующимися одинарными и тройными связями;
  • полупроводник.

Химические свойства углерода

При нормальных условиях углерод является инертным веществом, но при нагревании может реагировать с разнообразными простыми и сложными веществами.

Выше уже было сказано, что на внешнем энергетическом уровне углерода находится 4 электрона (ни туда, ни сюда), поэтому углерод может, как отдавать электроны, так и принимать их, проявляя в одних соединениях восстановительные свойства, а в других — окислительные.

Углерод является восстановителем в реакциях с кислородом и другими элементами, имеющими более высокую электроотрицательность (см. таблицу электроотрицательности элементов):

  • при нагревании на воздухе горит (при избытке кислорода с образованием углекислого газа; при его недостатке — оксида углерода(II)):
    C + O2 = CO2;
    2C + O2 = 2CO.
  • реагирует при высоких температурах с парами серы, легко взаимодействует с хлором, фтором:
    C + 2S = CS2
    C + 2Cl2 = CCl4
    2F2 + C = CF4
  • при нагревании восстанавливает из оксидов многие металлы и неметаллы:
    C 0 + Cu +2 O = Cu 0 + C +2 O;
    C 0 +C +4 O2 = 2C +2 O
  • при температуре 1000°C реагирует с водой (процесс газификации), с образованием водяного газа:
    C + H2O = CO + H2;

Углерод проявляет окислительные свойства в реакциях с металлами и водородом:

  • реагирует с металлами с образованием карбидов:
    Ca + 2C = CaC2
  • взаимодействуя с водородом, углерод образует метан:
    C + 2H2 = CH4

Углерод получают термическим разложением его соединений или пиролизом метана (при высокой температуре):
CH4 = C + 2H2.

Применение углерода

Соединения углерода нашли самое широкое применение в народном хозяйстве, перечислить все их не представляется возможным, укажем только некоторые:

  • графит применяется для изготовления грифелей карандашей, электродов, плавильных тиглей, как замедлитель нейтронов в ядерных реакторах, как смазочный материал;
  • алмазы применяются в ювелирном деле, в качестве режущего инструмента, в буровом оборудовании, как абразивный материал;
  • в качестве восстановителя углерод используют для получения некоторых металлов и неметаллов (железа, кремния);
  • углерод составляет основную массу активированного угля, который нашел широчайшее применение, как в быту (например, в качестве адсорбента для очистки воздуха и растворов), так и в медицине (таблетки активированного угля) и в промышленности (в качестве носителя для каталитических добавок, катализатора полимеризации и проч.).

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Источник

Оцените статью
Разные способы