- Способы получения энергии бактериями (дыхание, брожение). Методы культивирования анаэробов
- Питание бактерий
- Содержание:
- Способы поступления питательных веществ
- Гетеротрофные бактерии: культура Erwinia amylovora
- Источники углерода
- Источники энергии
- Хемоорганотрофные бактерии
- Природа доноров электронов
- Источники углерода, энергии и доноров электронов
- Способы получения энергии микробами
- 1.Способы получения бактериями энергии (дыхание,брожжение):
Способы получения энергии бактериями (дыхание, брожение). Методы культивирования анаэробов
Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление — отдача донорами (молекулами или атомами) водорода или электронов; восстановление — присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным — нитратным, сульфатным, фумаратным).
Анаэробиоз (от греч. аег — воздух + bios — жизнь) — жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.
По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.
Источник
Питание бактерий
Питание бактерий – это процесс поглощения и усвоения бактериальной клеткой пластического материала и энергии в результате преобразовательных реакций [4] .
Питание является неотъемлемой функцией каждого живого организма. В процессе питания организм получает вещества, идущие на синтез клеточных структур и служащие источником энергии для всех процессов жизнедеятельности. Для питания микроорганизмов необходимы те же элементы, что и для животных, и растений. Первоочередные элементы питания – углерод, азот, кислород, водород, являющиеся основой всех органических веществ, которые входят в состав живой клетки как прокариоритеческих так и эукариоэтических организмов [5] .
Типы питания бактерий чрезвычайно разнообразны. Различаются они в зависимости от способа поступления питательных веществ бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов [4] .
Содержание:
Способы поступления питательных веществ
По способам поступления питательных веществ бактерии подразделяются на:
- голофиты (греч. holos – полноценный и греч. phyticos – относящийся к растениям) – бактерии неспособные выделять в окружающую среду ферменты, расщепляющие субстраты, потребляют вещества только в растворенном, молекулярном виде;
- голозои (греч. holos – полноценный и греч. zoikos – относящийся к животным) – бактерии, обладающие комплексом ферментов, обеспечивающие внешнее питание – расщепление субстратов до молекул вне бактериальной клетки, после чего молекулы питательных веществ транспортируются внутрь бактерии[4] .
Гетеротрофные бактерии: культура Erwinia amylovora
Источники углерода
По источникам углерода различают:
- автотрофы (греч. autos– сам, trophe – пища) – бактерии, использующие в качестве источника углерода углекислый газ (CO2), из которого осуществляют синтез всех углеродосодержащих веществ;
- гетеротрофы (греч.geteros– другой, trophe– пища) – бактерии, использующие в качестве источника углерода различные органические вещества в молекулярной форме (многоатомные спирты, углеводы, жирные кислоты, аминокислоты) [4] .
Наибольшая степень гетеротрофности отмечается у прокариот, живущих только внутри других живых клеток, в частности хламидий и риккетсий [4] .
Источники энергии
В зависимости от используемых источников энергии бактерии подразделяют на два типа:
- фототрофы – бактерии способные использовать солнечную энергию;
- хемотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях [4] .
Хемоорганотрофные бактерии
Pectobacterium carotovorum ssp. carotovorum вытекают из тканей капусты [6] .
Природа доноров электронов
- литотрофы (греч. litos – камень) – бактерии, использующие в качестве доноров электронов неорганические вещества: водород (Н2), сероводород (Н2S), аммиак (NH3), серу (S), углекислый газ(CО2), ионы железа (Fe2+) и многие другие;
- органотрофы – бактерии, использующие в качестве донора электронов органические соединения (углеводы, аминокислоты) [4] .
В зависимости от источника энергии и природы донора электронов возможно четыре основных типа энергетического метаболизма: хемолитотрофия, хемоорганотрофия, фотолитотрофия, фотоорганотрофия. Таки образом, бактерии разделяют на:
- хемолитотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве доноров электронов неорганические вещества;
- хемоорганотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве донора электронов органические соединения;
- фотолитотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве доноров электронов неорганические вещества;
- фотоорганотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве донора электронов органические соединения [2] .
Источники углерода, энергии и доноров электронов
Каждый тип энергетического метаболизма осуществляется на базе различных биосинтетических способностей организма. Как отмечалось выше, прокариоты, прежде всего, делятся на автрофов и гетеротрофов. В последствие, те же микроорганизмы распределяются ещё по группам: фототрофы, хемотрофы, литотрофы, органотрофы [3] .
Следовательно, выделяется восемь сочетаний типов энергетического и конструктивного метаболизма, отражающие возможности способов питания прокариот:
Способы питания прокариот представлены в Таблице 1 [2] .
Всем перечисленным способам питания соответствуют реально существующие прокариоты. Однако число видов, относящихся к той или иной группе, далеко не одинаково. Большинство видов сосредоточено в группе с хемоорганогетеротрофным типом питания. В числе фотосинтезирующих прокариот (фототрофов) подавляющее число (все цианобактерии, большинство пурпурных и зеленых серобактерий) – фотолитотрофы [2] .
Кроме указанных восьми типов питания, отмечается существование миксотрофов – организмов, способных одновременно использовать различные возможности питания. Например, способные одновременно окислять органические и минеральные соединения или использующие в качестве источника углерода, как диоксид углерода, так и органические вещества [3] .
Источник
Способы получения энергии микробами
Таблица 2.
Характеристика микробов клеточной организации
Признаки | Прокариоты | Эукариоты |
Наличие истинного ядра с мембраной | Нет | Да |
Наличие нуклеотида | Да | Да |
Присутствие в клетке митохондрий, аппарата Гольджи, эндоплазматической сети | Нет | Да |
Наличие рибосом | Да 70S | Да 80S |
Целлюлоза и хитин в составе клеточной стенки | Нет | Да |
Муреин в составе клеточной стенки | Нет | Да |
Споры для размножения | Нет | Да |
Споры для сохранения жизнеспособности | Да | Да |
Наличие капсулы | Да | Да |
Представители | Кокки, диплококки, стрептококки | Вирусы, фаги |
Представьте рисунок №1
Прокариотные микроорганизмы имеют различную форму. Зарисуйте их (№2).
Монококки | Диплококки | Тетракокки | Сарцины |
Бациллы | Клостридиумы | Вибрионы |
Стрептококки | Стафилококки | Палочковидные бактерии |
Спирохеты | Спириллы | Актиномицеты |
Представьте рисунок (№5) морфологических признаков грибов, отметьте соответствующие обозначения цифрами.
Мукор Пенициллиум Аспергиллус
Признаки:
1.Одноклеточный мицелий 4.Спорангиеносец
2.Многоклеточный мицелий 5.Конидии
3.Спорангий со спорами 6.Конидиеносец
Систематическое положение грибов
Представители | Классы грибов | |
Зигомицеты | Аскомицеты | Дейтеромицеты |
Дрожжи | V | |
Пенициллиум | V | |
Мукор | V | |
Аспергиллус | V | |
Фузариум | V |
Форма и относительные размеры вирусов животных. ДНК-содержащие вирусы: 1 — поксвирус, 2 — иридовирус, 3 — герпесвирус, 4 — аденовирус. 5 — папо-вавирус; РНК-содержащие вирусы: 6 — парамиксовирус. 7 — ортомик-совирус, 8 — коронавирус. 9 — аренавирус, 10 — лейковирус, 11 — реовирус, 12 — раб-довирус, 13 — тогавирус
Таблица 4. Типы питания микроорганизмов
Типы питания | Источник энергии | Источник углерода | Микробы |
Фотоавтотрофы (фотолитотрофы) | свет (фотосинтез) | неорганические вещества (СО2 и др.) | Цианобактерии |
Фотогетеротрофы (фотоорганотрофы) | свет (фотосинтез) | органические вещества (C6 H12O6 и др.) | Пурпурные бактерии, зеленые нитчатые бактерии |
Хемоавтотрофы (хемолитотрофы) | химические реакции (хемосинтез) | неорганические вещества (СО2 и др.) | Серобактерии, метанобактерии |
Хемогетеротрофы (хемоорганотрофы): Сапрофиты паразиты* | химические реакции (хемосинтез) | органические вещества (C6 H12O6 и др.) | Риккетсии, хламидии |
*К этой группе относятся риккетсии, хламидии.
Источники энергии: а) химические реакции (хемосинтез);
б) свет (фотосинтез).
Источники углерода: а) неорганические вещества (СО2 и др.);
Способы получения энергии микробами
Типы дыхания | Исходные вещества | Конечные продукты | Источник кислорода, объем выделяемой энергии | Микробы |
Аэробное дыхание | Кислород | СО2, Н2О | Атмосферный кислород 2822 кДж | Дрожжи |
Анаэробное (нитратное) дыхание | Водород | Спирт | 118 кДж | Клостридии |
Неполное окисление органических веществ | Этиловый спирт | Уксусная кислота + вода | 504 кДж | Уксуснокислые бактерии |
Брожение | Глюкоза | СО2, спирт | 118 кДж | Маслянокислые бактерии, столбнячная бактерия |
Таблица 6. Способы размножения прокариотных микроорганизмов
Источник
1.Способы получения бактериями энергии (дыхание,брожжение):
Сущность процесса дыхания бактерий заключается в совокупности биохимических реакций, в ходе которых идет образование АТФ, без которого невозможен процесс метаболизма, протекающего с затратой энергии. АТФ является универсальным переносчиком химической энергии.
Большая часть бактерий использует в процессе дыхания свободный кислород. Такие микроорганизмы получили название аэробные (от аег — воздух). Аэробный тип дыхания характеризуется тем, что окисление органических соединений происходит при участии кислорода воздуха с освобождением большого количества калорий. Примером может служить окисление глюкозы в аэробных условиях, которое приводит к выделению большого количества энергии:
С6Н12О6 + 602 6С02+6Н20 + 688,5 ккал.
Процесс анаэробного дыхания микробов заключается в том, что бактерии получают энергию при окислительно-восстановительных реакциях, при которых акцептором водорода является не кислород, а неорганические соединения — нитрат или сульфат.
Многие бактерии могут существовать в аэробных и анаэробных условиях. Такие микроорганизмы получили название факультативных (необязательных) анаэробов.
Факультативные анаэробы обладают так называемым нитратным дыханием, так как образующийся при окислении органических соединений нитрат (акцептор водорода) восстанавливается до молекулярного азота и аммиака. (стафилококки, кишечная палочка)
Облигатные (обязательные) анаэробы могут существовать лишь в строго анаэробных условиях.. Облигатные анаэробы при окислении органических соединений образуют сульфат, который восстанавливается до сероводорода, поэтому облигатное дыхание называют еще сульфатным. (возбудители столбняка, газовой гангрены, ботулизма)
Образование энергии (АТФ) наблюдается также при процессах брожения, осуществляемых разнообразными микроорганизмами. Особенность брожения заключается в том, что органические соединения одновременно служат как донорами электронов (при их окислении), так и акцепторами (при их восстановлении). Брожение происходит в отсутствие кислорода, в строго анаэробных условиях. Основными соединениями брожения являются углеводы. В зависимости от участия определенного микроба и от конечных продуктов расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое, маслянокислое и другие виды брожения.
Спиртовое брожение встречается, в основном, у дрожжей. Конечными продуктами являются этанол и СО2. Сбраживание глюкозы происходит в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера. Спиртовое брожение используется в пищевой промышленности : хлебопекарной, виноделии.
Молочнокислое брожение. Различают два типа: гомоферментативное и гетероферментативное.
При гомоферментативном типе расщепление глюкозы происходит гликолитическим распадом (ФДФ-путь) Водород от восстановленного НАД передается на пируват при помощи лактатдегидрогеназы, при этом образуется молочная кислота. Гомоферментативное брожение происходит у S.pyogenes, E.faecalis, S.salivarius, у некоторых видов рода Lactobacillus.
Гетероферментативное молочнокислое брожение присутствует у бактерий, у которых отсутствуют ферменты ФДФ-пути : альдолаза и триозофосфатизомераза. Расщепление глюкозы происходит с образованием фосфоглицеринового альдегида (ПФ-путь), который превращается в пируват по ФДФ-пути и в последующем восстанавливается в лактат. Дополнительными продуктами этого типа брожения являются также этанол, уксусная кислота. Гетероферментативное молочнокислое брожение встречается у представителей родов Lactobacillus и Bifidobacterium.
Муравьинокислое (смешанное) брожение встречается у представителей семейств Enterobacteriaceae, Vibrionaceae.
Аэротолерантные микроорганизмы не используют кислород для получения энергии, но могут существовать в его атмосфере.
2.Реакция преципитации. Механизм. Компоненты. Способы постановки. Применение.Реакция преципитации (РП) — это формирова¬ние и осаждение комплекса растворимого молекулярного антигена с антителами в виде помутнения, называемого преципитатом. Он образуется при смешивании антигенов и антител в эквивалентных количес¬твах; избыток одного из них снижает уровень образования иммунного комплекса.
РП ставят в пробирках (реакция кольцепреципитации), в гелях, питательных средах и др. Широкое рас-пространение получили разновидности РП в полужидком геле агара или агарозы: двойная иммунодиффузия по Оухтерлони, радиальная иммунодиффузия, иммуноэлектрофорез и др.
Механизм. Проводится с прозрачными коллоид¬ными растворимыми антигенами, экстрагированными из патоло¬гического материала, объектов внешней среды или чистых культур бактерий. В реакции используют прозрачные диагности¬ческие преципитирующие сыворотки с высокими титрами анти¬тел. За титр преципитирующей сыворотки принимают то наибольшее разведение антигена, которое при взаимодействии с иммун¬ной сывороткой вызывает образование видимого преципитата — помутнение.
Реакция кольцепреципитации ставится в узких пробирках (диаметр 0,5 см), в которые вносят по 0,2—0,3 мл преципити-рующей сыворотки. Затем пастеровской пипеткой медленно наслаивают 0,1—0,2 мл раствора антигена. Пробирки осторожно переводят в’вертикальное положение. Учет реакции производят через 1—2 мин. В случае положительной реакции на границе между сывороткой и исследуемым антигеном появляется пре¬ципитат в виде белого кольца. В контрольных пробирках преци¬питат не образуется.
3.Гонококки. Таксономия. Характеристика. Микробиологическая диагностика гонореи. Лечение.Таксономия. Гонококк Neisseria gonorrhoeae относится к семейству Neisseriaceae, роду Neisseria.Гонококки вызывают гонорею — венерическое заболевание человека, выражающееся в гнойном поражении слизистых оболочек мочеполовых органов, и бленнорею — специфическое гнойное воспаление конъюнктивы глаз.Морфология и тинкториальные свойства. Гонококки морфологически идентичны менингококкам — диплококки бобовидной формы, размером от 1 до 1,5 мкм, неподвижны, не образуют спор, капсула не обнаруживается, грамотрицательны. Культивирование и ферментативные свойства. Гонококки очень чувствительны к питательным средам: их культивирование проводится при добавлении нативного человеческого белка — крови, сыворотки или асцитической жидкости. Среды должны быть свежеприготовленными, с сохраненной влажностью. Строго выдерживается температурный режим 36—37 °С; при повышении до 39 °С наблюдается гибель гонококков. Гонококки дают мелкие колонии до 1—2 мм в диаметре, круглые, прозрачные. Биохимически гонококки малоактивны — разлагают только глюкозу.Антигенная структура и токсинообразование. В антигенном отношении гонококки неоднородны; различают несколько серологических вариантов, однако практического значения это деление не имеет. Гонококки содержат эндотоксин, который обусловливает общую интоксикацию.Резистентность. Гонококки малоустойчивы в окружающей среде вне человеческого организма. Повышение температуры до 40 °С приводит к отмиранию кокков, а нагревание до 60 °С вызывает гибель в течение получаса. Гонококки очень чувствительны к высыханию. Дезинфицирующие вещества убивают их быстро; особенно чувствительны гонококки к нитрату серебра, который губит их уже в разведении 1 : 1000. Этот антисептик используется для обработки конъюнктивы глаз новорожденных с целью профилактики бленнореи. Входными воротами для гонококков служит цилиндрический эпителий уретры, шейки матки, конъюнктива глазИммунитет. Особенностью иммунитета к гонорее является отсутствие как врожденного, так и приобретенного иммунитета. Человек, переболевший гонореей, может заболеть вновь в результате реинфекции.Лабораторная диагностика. При острой форме основным методом исследования является бактериоскопия. Из гноя, взятого из уретры, влагалища, шейки матки, готовят два мазка: один окрашивают метиленовым синим, второй — по Граму. Характерное расположение гонококков внутри лейкоцитов — явление незавершенного’ фагоцитоза, грамотрицательная окраска их достаточны для положительного ответа. Выделение чистой культуры необходимо в том случае, если гонококки не обнаруживаются микроскопически. При острой гонорее, но уже леченной, резко снижается количество гонококков и меняется их морфология. Для диагностики хронической гонореи используется серологический метод: реакция связывания комплемента (РСК) по Борде —Жангу.Эпидемиология. Источником инфекции является только человек, больной гонореей. Заражение происходит половым путем в результате прямого контакта, значительно реже — через предметы домашнего обихода (влажные губки, полотенца),Специфическое лечение и профилактика. Острая гонорея поддается лечению препаратами пенициллина, стрептомицина, тетрациклинами и сульфаниламидами, раннее применение которых обеспечивает излечение. Хронические формы гонореи и различные осложнения (гонорейные артриты, аднекситы, бартолиниты и др.) плохо поддаются лечению. Гоновакцина.в настоящее время применяют для лечения больных с осложнениями или в диагностических целях (провокационные пробы). Общая профилактика основана на мерах предупреждения венерических заболеваний. Для предупреждения гонобленнореи новорождённым сразу после рождения закапывают в конъюнктивальный мешок (девочкам также в половую щель) 1-2 капли раствора сульфацил натрия.
Источник