Основные способы межклеточной коммуникации.
Клетки многоклеточного организма нуждаются в обмене информацией друг с другом для регуляции своего развития и организации в ткани, для контроля процессов роста и деления и для координации функций. Взаимодействие животных клеток осуществляется следующими способами:
1) клетки образуют между собой плотные щелевые контакты;
2.клетки несут на своей поверхности связанные с плазматической мембраной сигнальные молекулы, оказывающие влияние на другие клетки при непосредственном физическом контакте;
3.клетки выделяют химические вещества, служащие сигналами для других клеток, расположенных на расстоянии:
а) в случае эндокринной сигнализации специализированные эндок-
ринные клетки выделяют гормоны, которые разносятся кровью и
воздействуют на клетки-мишени, находящиеся иногда в самых
разных частях организма;
б) в случае паракринной сигнализации клетки выделяют локальные
химические медиаторы, которые действуют только на клетки
ближайшего окружения, быть может в радиусе около милли-
метра, в т. ч. аутокриния, т. е. действие своей сигнальной моле-
кулы на саму клетку через внешний рецептор ее мембраны;
в) при синаптической передаче (используется только в нервной систе-
ме) клетки секретируют нейромедиаторы в специализированных
межклеточных контактах, называемых синапсами.
5. Выделяют следующие основные типы рецепторов:
Сенсорные (представлены в сенсорных системах — Гл. 5, 6, 7).
Молекулярные (генетически детерминированные макромолекулярные сенсоры белки, гликолипопротеиды).
для специфического-взаимодействия с биологически значимым сигналом химической или физической природы;
для восприятия, трансформации и передачи заключенной в сигналах информации па пострецешорные структуры;
для инициации каскада биохимических, и/или физико-химических процессов, составляющих основу ответной реакцииклетки-мишени на воспринятый сигнал.
Молекулы, выполняющие сигнальные функции, способные активировать специфические рецепторы, называются лигандами.
Лиганд-рецепторное взаимодействие. вторичные посредники
Механизмы трансмембранной передачи сигналов
Наиболее подробно изучены четыре основных механизма трансмембранной передачи сигналов:
1.проникновение растворимых в липидах лигандов через мембрану и их действие на внутриклеточный рецептор — ядерный или цито-зольный (стероидные и тиреоидные гормоны);
2.использование трансмембранного рецепторного белка, ферментативная активность которого регулируется лигандом (инсулин, эпидермальный фактор роста и др.). Это односегментныи трансмем-бранный рецептор;
3.закрытие или открытие трансмембранных ионных каналов при связывании с лигандом;
4.использование трансмембранного рецептора для стимуляции сигнального передающего белка (G-белка), который активирует уже внутриклеточный посредник. Это семисегментный трансмембранный рецептор.
Рецепторы, связанные с G-белком, обычно запускают целую цепь событий, изменяющих в клепке концентрацию одной или нескольких внутриклеточных сигнальных молекул, которые называются вторичными посредниками. Эти молекулы в свою очередь изменяют поведение других белков в клетке-мишени.
Ко вторичным посредникам относятся: 1) циклический аденозинмонофосфат (с AMP); 2) циклический гуанозинмонофосфат (с GMP); 3) инозитолтрифосфат (1Р3), 4) диацилглицерол (ДАГ), 5) ионы кальция (Са2 + ).
Понятие о раздражимости и возбудимости.
Потонциал покоя как основа для возникновения электрических сигналов.
Потенциал покоя – это разность потенциалов между внутренней и наружной поверхностью мембраны у клетки, которая находится в состоянии физиологического покоя. При этом наружная сторона заряжена положительно, внутренняя- отрицательно. Величина ПП может быть в пределах 30—90 мВ. Для обозначения величины отрицательного заряда мембраны применяют символ Е0 (Е0 = = 30—90 мВ). В механизме возникновения потенциала покоя ведущая роль принадлежит следующим факторам.
1. Наличие разности концентраций (градиентов) ионов К+
и Na+ между внутриклеточной и внеклеточной средой
2. Различная проницаемость клеточных мембран для мине-
ральных ионов.
3. Работа натрий-калиевого насоса, которая вносит вклад в создание потенциала покоя
РЕЦЕПТОРНЫЙ ПОТЕНЦИАЛ.
Рецепторным потенциалом называют изменение уровня поляризации мембраны рецептора, вызываемое воздействием раздражителя. Это местный потенциал, который быстро уменьшается (затухает) по мере удаления от точки возникновения. Между силой действующего раздражителя и величиной рецепторного потенциала существует логарифмическая зависимость.
Преобразование рецепторного потенциала в потенциал действия происходит благодаря возникновению локальных круговых токов между деполяризованной мембраной рецептора и ближайшим перехватом Ранвье (в мякотных нервных волокнах, рис. 4.5). На мембране нервного волокна в области таких перехватов сосредоточено много электроуправляемых натриевых каналов. Под влиянием кругового тока мембрана в перехвате Ранвье деполяризуется до критического уровня и эти
каналы открываются и обеспечивают генерацию потенциала действия.
Таким образом, в афферентных нервных волокнах потенциал действия первично возникает на ближайшем к рецептору участке мембраны нервного волокна, имеющем потенциалза-висимые натриевые каналы. Возникнув в начале волокна, потенциал действия проводится вдоль него по направлению к телу нейрона и далее к нервным центрам.
В сенсорных рецепторах, которые образованы не нервными окончаниями, а целостными нервными или эпителиальными клетками, возникший рецепторный потенциал оказывает возбуждающее действие на чувствительное нервное окончание через синаптическую связь. При возникновении рецепторного потенциала в синаптическую щель выделяется медиатор, который деполяризует постсинаптическую мембрану нервного окончания, и на ближайшем безмиелиновом участке этого волокна возникает потенциал действия, передающийся к нервным центрам.
В хеморецепторах механизм генерации рецепторного потенциала несколько отличается от механизма в механорецепторах. Так, в обонятельных рецепторах молекула вещества (одоранта) связывается с чувствительным к нему рецептором, что приводит к активации цепочки биохимических реакций, образующих вещества (так называемые вторичные посредники), которые открывают в мембране рецептора натриевые и кальциевые каналы. Вход в рецепторную обонятельную клетку Na и Са2+ обеспечивает генерацию на ее мембране рецепторного потенциала.
При длительном непрерывном действии раздражителя в некоторых видах рецепторов рецепторный потенциал, несмотря на продолжающееся воздействие раздражителя, может постепенно уменьшаться. В таком случае частота возникающих в афферентном нервном волокне импульсов также уменьшается. Интенсивность ощущения при этом тоже снижается, и оно может исчезнуть совсем. Такие рецепторы называют адаптирующимися. К быстроадаптирующимся рецепторам относятся тактильные (воспринимающие прикосновение), обонятельные и ряддругих. К практически неадаптирующимся рецепторам относят слуховые дуги аорты икаротидного тельца, воспринимающие давление и растяжение
Потенциал действия.
Потенциал действия — это быстрое, высокоамплитудное изменение заряда мембраны, вызываемое действием достаточно сильных (сверхпороговых) раздражителей (рис. 4.2). Характерным признаком наличия потенциала действия служит появление кратковременной инверсии (перемены) знака заряда на мембране. Снаружи он на короткое время (0,5—2 мс) становится отрицательным. Величина инверсии может составлять до 30 мВ, а величина всего потенциала действия — 60— 130 мВ.
Потенциал действия подразделяют на участки: деполяризацию, реполяризацию и гиперполяризацию (см. рис. 4.4). Деполяризацией называют всю восходящую часть потенциала действия, в ней выделяют участок, соответствующий локальному потенциалу (от уровня Е0 до £к), быструю деполяризацию (от уровня £к до уровня 0 мВ), инверсию знака заряда (от 0 мВ до начала реполяризации). Далее идет реполяриза-ция. Приближаясь к уровню £0, ее скорость может замедляться, и этот участок называют следовой отрицательностью (или следовым отрицательным потенциалом). У некоторых клеток вслед за реполяризацией идет гиперполяризация (возрастание поляризации мембраны). Ее называют следовым положительным потенциалом.
Начальную высокоамплитудную быстропротекающую часть потенциала действия называют также пик или спайк. Он включает фазы деполяризации и быстрой реполяризации (до следового отрицательного потенциала).В механизме развития потенциала действия важнейшая роль принадлежит увеличению проницаемости клеточной мембраны для ионов Na+. Например, при действии на клетку электрического тока он вызывает ее деполяризацию, и когда заряд мембраны уменьшается до критического уровня (£к) — открываются электроуправляемые натриевые каналы. Эти каналы образованы встроенными в мембрану белковыми молекулами, внутри которых имеется своеобразная пора и два вида перекрывающих ее ворот. Различают так называемые актива-ционные, расположенные с наружной стороны, и инактиваци-онные ворота, находящиеся с внутренней стороны мембраны (рис. 4.3). Ворота представляют собой участки белковой молекулы, изменяющие свое положение в зависимости от уровня поляризации мембраны. Чтобы канал мог пропускать Na+, необходимо, чтобы все его ворота были открыты. Это и происходит, когда деполяризация достигает уровня Ек. Открытие натриевых каналов приводит к лавинообразному вхождению натрия внутрь клетки. Поскольку ионы натрия несут положительный заряд, они нейтрализуют избыток отрицательных зарядов в клетке, затем на внутренней стороне мембраны происходит инверсия (перемена)знака заряда с отрицательного на положительный.
Изменение заряда мембраны имеет жесткую связь с изменением возбудимости клетки (рис. 4.4). При действии на клетку подпорогового по силе кратковременного раздражителя возни-каетлокальный потенциал и возбудимость в это время повышается. Когда поляризация мембраны возвращается к исходному уровню, возбудимость также приходит к нормальному значению (условно исходная величина возбудимости принята за 100%).
Если же на клетку действует сверхпороговый раздражитель, то величина локального потенциала достигает уровня Ек и возникает потенциал действия. В этот момент возбудимость клетки мгновенно падает до нулевого уровня. Начинается фаза абсолютной рефрактерности (невозбудимости). Эта фаза длится до начала реполяризации. После начала реполяризации возбудимость клетки начинает возрастать, но остается пониженной относительно уровня нормы — фаза относительной рефрактерности. Во время следовой отрицательности возбудимость клетки повышена — фаза супернормальной возбудимости (или экзальтации), а во время следовой положительности — понижена (фаза субнормальной возбудимости).
Возбудимость клетки имеет прямую зависимость от разности уровней потенциала покоя (Е0) и потенциала критической деполяризации (Ек). Эту разность называют пороговым потенциалом (А£):
Источник
115. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция.
По расстоянию от клетки—продуцента гормона до клетки-мишени различают эндокринный, паракринный и аутокринный варианты регуляции. • Эндокринная, или дистантная, регуляция. Секреция гормона происходит в жидкие среды организма. Клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко. Пример: секреторные клетки эндокринных желёз, гормоны из которых поступают в систему общего кровотока. •Паракринная регуляция. Продуцент биологически активного вещества и клетка-мишень расположены рядом. Молекулы гормона достигают мишени путём диффузии в межклеточном веществе. Например, в париетальных клетках желёз желудка секрецию Н + стимулируют гастрин и гистамин, а подавляют соматостатин и Пг, секретируемые рядом расположенными клетками.• Аутокринная регуляция. При аутокринной регуляции клетка—продуцент гормона имеет рецепторы к этому же гормону (другими словами, клетка—продуцент гормона в то же время является его мишенью). Примеры: эндотелины, вырабатываемые клетками эндотелия и воздействующие на эти же эндотелиальные клетки; Т-лимфоциты, секретирующие интерлейкины, имеющие мишенями разные клетки, в том числе и Т-лимфоциты.
116. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов
Роль гормонов в регуляции обмена веществ и функций. Интегрирующими регуляторами, связывающими различные регуляторные механизмы и метаболизм в разных органах, являются гормоны. Они функционируют как химические посредники, переносящие сигналы, возникающие в различных органах и ЦНС. Ответная реакция клетки на действие гормона очень разнообразна и определяется как химическим строением гормона, так и типом клетки, на которую направлено действие гормона. В крови гормоны присутствуют в очень низкой концентрации. Для того чтобы передавать сигналы в клетки, гормоны должны распознаваться и связываться особыми белками клетки — рецепторами, обладающими высокой специфичностью. Физиологический эффект гормона определяется разными факторами, например концентрацией гормона (которая определяется скоростью инактивации в результате распада гормонов, протекающего в основном в печени, и скоростью выведения гормонов и его метаболитов из организма), его сродством к белкам-переносчикам (стероидные и тиреоидные гормоны транспортируются по кровеносному руслу В комплексе с белками), количеством и типом рецепторов на поверхности клеток-мишеней. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.Эти сигналы по нейронам поступают в гипоталамус, где стимулируют синтез пептидных рилизинг-гормонов (от англ, release — освобождать) — либеринов и статинов, которые, соответственно, стимулируют или ингибируют синтез и секрецию гормонов передней доли гипофиза. Гормоны передней доли гипофиза, называемые тройными гормонами, стимулируют образование и секрецию гормонов периферических эндокринных желёз, которые поступают в общий кровоток и взаимодействуют с клетками-мишенями. Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз. Такие петли обратной связи действуют в системах регуляции гормонов надпочечников, щитовидной железы, половых желёз. Не все эндокринные железы регулируются подобным образом. Гормоны задней доли гипофиза (вазопрессин и окситоцин) синтезируются в гипоталамусе в виде предшественников и хранятся в гранулах терминальных аксонов нейрогипофиза. Секреция гормонов поджелудочной железы (инсулина и глюкагона) напрямую зависит от концентрации глюкозы в крови. В регуляции межклеточных взаимодействий участвуют также низкомолекулярные белковые соединения — цитокины. Влияние цитокинов на различные функции клеток обусловлено их взаимодействием с мембранными рецепторами. Через образование внутриклеточных посредников сигналы передаются в ядро, где происходят активация определённых генов и индукция синтеза белков. Все цитокины объединяются следующими общими свойствами:
синтезируются в процессе иммунного ответа организма, служат медиаторами иммунной и воспалительной реакций и обладают в основном аутокринной, в некоторых случаях паракринной и эндокринной активностью;
действуют как факторы роста и факторы дифференцировки клеток (при этом вызывают преимущественно медленные клеточные реакции, требующие синтеза новых белков);
обладают плейотропной (полифункциональной) активностью.
Биологическое действие гормонов проявляется через их взаимодействие с рецепторами клеток-мишеней. Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например изменение скорости синтеза ферментов и других белков или изменение их активности. Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию. Например, щитовидная железа — специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Глюкагон, воздействуя на адипоциты, активирует липолиз, в печени стимулирует мобилизацию гликогена и глюконеогенез. Характерный признак клетки-мишени — способность воспринимать информацию, закодированную в химической структуре гормона.
Рецепторы гормонов. Начальный этап в действии гормона на клетку-мишень — взаимодействие гормона с рецептором клетки. Концентрация гормонов во внеклеточной жидкости очень низка и обычно колеблется в пределах 10 -6 -10 -11 ммоль/л. Клетки-мишени отличают соответствующий гормон от множества других молекул и гормонов благодаря наличию на клетке-мишени соответствующего рецептора со специфическим центром связывания с гормоном.
Общая характеристика рецепторов
Рецепторы пептидных гормонов и адреналина располагаются на поверхности клеточной мембраны. Рецепторы стероидных и тиреоидных гормонов находятся внутри клетки. Причём внутриклеточные рецепторы для одних гормонов, например глюкокортикоидов, локализованы в цитозоле, для других, таких как андрогены, эстрогены, тиреоидные гормоны, расположены в ядре клетки. Рецепторы по своей химической природе являются белками и, как правило, состоят из нескольких доменов. В структуре мембранных рецепторов можно выделить 3 функционально разных участка. Первый домен (домен узнавания) расположен в N-концевой части полипептидной цепи на внешней стороне клеточной мембраны; он содержит гликозилированные участки и обеспечивает узнавание и связывание гормона. Второй домен — трансмембранный. У рецепторов одного типа, сопряжённых с G-белками, он состоит из 7 плотно упакованных α-спиральных полипептидных последовательностей. У рецепторов другого типа трансмембранный домен включает только одну α-спирадизованную полипептидную цепь (например, обе β-субъединицы гетеротетрамерного рецептора инсулина α2β2). Третий (цитоплазматический) домен создаёт химический сигнал в клетке, который сопрягает узнавание и связывание гормона с определённым внутриклеточным ответом. Цитоплазматический участок рецептора таких гормонов, как инсулин, фактор роста эпидермиса и инсулиноподобный фактор роста-1 на внутренней стороне мембраны обладает тирозинки-назной активностью, а цитоплазматические участки рецепторов гормона роста, пролактина и цитокинов сами не проявляют тирозинкиназ-ную активность, а ассоциируются с другими цитоплазматическими протеинкиназами, которые их фосфорилируют и активируют.
Рецепторы стероидных и тиреоидных гормонов содержат 3 функциональные области. На С-концевом участке полипептидной цепи рецептора находится домен узнавания и связывания гормона. Центральная часть рецептора включает домен связывания ДНК. На N-концевом участке полипептидной цепи располагается домен, называемый вариабельной областью рецептора, отвечающий за связывание с другими белками, вместе с которыми участвует в регуляции транскрипции.
Источник