Теоретические основы подъема смеси по трубам
Подъем жидкости из скважин нефтяных месторождений практически всегда сопровождается выделением газа. Поэтому для понимания процессов подъема жидкости из скважин, умения проектировать установки для подъема и выбирать необходимое оборудование, надо знать законы движения газожидкостных смесей в трубах. При всех известных способах добычи нефти приходится иметь дело с движением газожидкостных смесей либо на всем пути от забоя до устья, либо на большей части этого пути. Эти законы сложнее законов движения однородных жидкостей в трубах и изучены хуже. Если при движении однофазного потока приходится иметь дело с одним коэффициентом трения то при движении двухфазного потока — газожидкостных смесей приходится прибегать, по меньшей мере к двум опытным характеристикам потока, которые в свою
очередь зависят от многих других параметров процесса и условий движения, многообразие которых чрезвычайно велико.
Принципиальная схема газожидкостного подъемника показана на рис.3.1.
В водоем с постоянным уровнем погружены подъемные трубы 1 длиной L на глубину h1 К нижнему концу подъемных труб (к башмаку труб) по трубам 2 (линия подачи газа) подводится газ. В подъемных трубах газ всплывает в жидкости и образуется газожидкостная смесь, которая поднимается на высоту h 1 . Поскольку трубы 1 и водоем являются сообщающимися сосудами, то у башмака будет абсолютное давление с одной стороны
и с другой стороны
где р,рсм— плотность соответственно жидкости и газожидкостной смеси; Р0 — атмосферное давление воздуха над уровнем жидкости; Р2 — противодавление на выкиде подъемных труб (устьевое давление).
Приравнивая эти уравнения, в случае одинаковых давлений газа над жидкостью в трубах и водоеме (Р2=Р0), получаем h1p= h 1 pcм. Так как средняя плотность смеси жидкости и газа
рсм меньше плотности жидкости р (рсм 1 >hr Для любого тела при постоянной массе плотность тем меньше, чем больше объем. Увеличивая объем газа в смеси (объемный расход его), уменьшаем плотность смеси и соответственно повышаем h 1 . Такая смесь может существовать только при движении одной или обеих фаз. Таким образом, принцип работы газожидкостного подъемника заключается в уменьшении плотности смеси в подъемных трубах.
Эксперименты показали, что с увеличением расхода газа увеличивается высота подъема жидкости h 1 и при определенном расходе его начинается перелив жидкости (h 1 >L). Расход жидкости при увеличивающемся расходе газа сначала возрастает, достигает максимума, а затем уменьшается вплоть до нуля.
Это связано с тем, что труба заданной длины L и диаметра d при постоянном перепаде давления Р=Р1 — Р2 может пропустить вполне определенный расход жидкости, газа или газожидкостной смеси. Зависимость объемного расхода жидкости q от объемного расхода газа V0 называют кривой лифтирования (подъема) (рис 3.2). поэтому газожидкостный подъемник можно называть также газлифтом.
Рис. 3.2. Зависимость подачи q подъемника, коэффициента полезного действия и удельного расхода газа R0 от расхода газа
На кривой лифтирования имеются четыре характерные точки. Точка А соответствует началу подачи (перелива) жидкости, точка В соответствует оптимальной подаче подъемника, точка С — максимальной подаче подъемника, точка D — срыву подачи подъемника по жидкости. Оптимальный режим работы характеризуется максимальным значением КПД подъемника.
Графическая зависимость q(V0) получена при заданном относительном погружении труб под уровень жидкости:
=h1/L (3.3)
или с учетом противодавления Р2 на выкиде
Эксперименты показали, что в общем случае подача q газожидкостного подъемника является функцией многих параметров:
где p*,u* — соответственно отношение плотностей и абсолютных вязкостей жидкости и газа; о — поверхностное натяжение на границе раздела газ-жидкость.
Баланс энергии в скважине
Основным процессом в добыче нефти является процесс подъема на поверхность газожидкостной смеси от забоя скважины. Исходя из этого, можно сформулировать основную задачу эксплуатации скважин — осуществление процесса подъема продукции скважин с наибольшей эффективностью и бесперебойно.
Подъем нефти в стволе скважины может происходить либо за счет природной энергии нефтяной залежи Wn, либо за счет энергии искусственно вводимой в скважину с поверхности Wu, либо за счет пластовой и искусственно вводимой в скважину с поверхности энергий Wn + Wu.
Так как процесс движения продукции скважин от забоя до поверхности связан с определенными потерями, то сам процесс подъема возможен лишь при определенном соотношении энергии, которой обладает продукция скважины, и потерь энергии при ее движении. Основными видами потерь при движении газожидкостной смеси в скважине являются:
1. Потери энергии на преодоление веса гидростатического столба жидкости или смеси, W (без учета скольжения газа).
2. Потери энергии, связанные с движением ее по подъемным трубам и через устьевое оборудование, W .
3. Потери энергии за счет поддержания противодавления на устье скважины, необходимого для продвижения продукции скважины по наземным трубопроводам, W. Эта составляющая энергетического баланса не принимает никакого участия в процессе подъема, а представляет энергию, уносимую потоком жидкости за пределы устья скважины.
Отсюда баланс энергии в работающей скважине можно записать в виде:
Потери энергии, связанные с движением смеси по подъемным трубам и через устьевое оборудование Wлс,
— потери на трение, связанные с движением смеси по трубе Wmр , и потери на трение, связанные с относительным скольжением газа в жидкости Wck;
— потери на местные сопротивления (движение смеси через муфтовые соединения труб и через устьевую арматуру) Wmc
— инерционные потери, связанные с ускоренным движением смеси Wин.
С учетом этого выражение (3.6) может быть переписано следующим образом:
Анализ исследований, проведенных в нефтяных скважинах, показывает, что составляющие WMc и Wuh настолько малы в общем балансе энергии, что ими можно без большой погрешности пренебречь. Тогда окончательно баланс энергии в скважине можно записать:
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Источник
Основные способы эксплуатации добывающих скважин
Все известные способы эксплуатации скважин подразделяются на следующие группы:
− фонтанный, когда нефть извлекается из скважин самоизливом;
− газлифтный — с помощью энергии сжатого газа, вводимого в скважину извне;
− насосный — извлечение нефти с помощью насосов различных типов.
Выбор способа эксплуатации нефтяных скважин зависит от величины пластового давления и глубины залегания пласта.
Фонтанный способ эксплуатации скважинприменяется, если пластовое давление в залежи велико. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам за счет пластовой энергии. Фонтанирование скважин может происходить под действием гидростатического напора, а также энергии расширяющегося газа.
Практически фонтанирование только под действием гидростатического напора встречается очень редко. В большинстве случаев вместе с нефтью в пласте находится газ, и он играет главную роль в фонтанировании скважин.
В нефтяных залежах, где давление насыщения нефти газом равно пластовому давлению газ делает двойную работу: выделяясь в пласте он выталкивает нефть, а в трубах поднимает ее на поверхность.
Для некоторых режимов характерно содержание в нефти газа, находящегося в растворенном состоянии и не выделяющегося из нефти в пределах пласта. В этом случае по мере подъема жидкости в скважине давление снижается и на некотором расстоянии от забоя достигает величины, равной давлению насыщения, и из жидкости начинает выделяться газ, который способствует дальнейшему подъему жидкости на поверхность.
Оборудование любой скважины, в том числе фонтанной, должно обеспечивать отбор продукции в заданном режиме и возможность проведения необходимых технологических операций с учетом охраны недр, окружающей среды и предотвращения аварийных ситуаций. Оно подразделяется на скважинное (подземное) и устьевое (земное).
Логическим продолжением фонтанной эксплуатации является газлифтная эксплуатация, при которой недостающее количество газа для подъема жидкости закачивают в скважину с поверхности. Газ в нефтяную скважину можно подать под давлением без его дополнительной компрессии из газовых пластов. Такой способ называют бескомпрессорным. Газлифт характеризуется высокой технико-экономической эффективностью, отсутствием в скважинах механизмов и трущихся деталей, простотой обслуживания скважин и регулирования работы.
В скважину опускают два ряда насосных труб. По затрубному пространству между наружной и внутренней трубами подают под давлением газ или воздух. Наружную трубу называют воздушной. Внутреннюю трубу, по которой нефть в смеси с газом или воздухом поднимается на поверхность, называют подъемной. Подъемная труба имеет меньшую длину по сравнению с воздушной. До закачки газа жидкость в подъемной и воздушной трубах находится на одном уровне. Этот уровень называют статическим. В этом случае давление жидкости на забое соответствует пластовому давлению.
По воздушной трубе (затрубному пространству) в скважину под давлением этого газа жидкость полностью вытесняется в подъемную трубу, после этого газ проникает в подъемную трубу и перемешивается с жидкостью. Плотность газированной жидкости уменьшается и по мере ее насыщения газом достигается разность в плотности газированной и негазированной жидкостей.
Вследствие этого более плотная (негазированная) жидкость будет вытеснять из подъемной трубы газированную жидкость. Если газ подавать в скважину непрерывно, то газированная жидкость будет подниматься и выходить из скважины в систему сбора. При этом в затрубном пространстве подъемной трубы устанавливается новый уровень жидкости, называемый динамической высотой или динамическим уровнем.
При насосном способеэксплуатации подъем нефти из скважин на поверхность осуществляется штанговыми и бесштанговыми насосами (погружные электроцентробежные насосы, винтовые насосы и др).
Источник
3 Основные способы эксплуатации добывающих скважин
Название | 3 Основные способы эксплуатации добывающих скважин |
страница | 1/5 |
Дата публикации | 20.03.2013 |
Размер | 493.31 Kb. |
Тип | Документы |
userdocs.ru > Математика > Документы
ГЛАВА 3 ФОНТАННАЯ ДОБЫЧА НЕФТИ В связи с промышленным внедрением и повсеместным использованием новейших достижений науки в процессе нефтедобычи несколько изменилось и понятие основных способов эксплуатации нефтяных скважин. Если подъем жидкости или смеси от забоя на дневную поверхность происходит только за счет природной энергии, то такой способ эксплуатации называется естественно-фонтанным. Следует заметить, что в настоящее время этот способ имеет весьма ограниченное распространение. Если подъем жидкости или смеси от забоя на дневную поверхность происходит либо за счет искусственной энергии, либо за счет естественной и искусственной энергии, то такой способ эксплуатации будем называть механизированным. Механизированный способ эксплуатации может осуществляться в двух видах: 1. Когда искусственная энергия вводится в добываемую жидкость централизованно, а распределение ее происходит непосредственно в залежи. Такой способ ввода энергии в залежь и ее распределение осуществляются при использовании методов поддержания пластового давления. Если при этом каждая конкретная эксплуатационная скважина оборудована только колонной насосно-компрессорных труб (отсутствуют механические приспособления для подъема), указанный способ эксплуатации будем называть искусственно-фонтанным. Искусственно-фонтанная эксплуатация имеет довольно широкое распространение. 2. Когда искусственная энергия вводится непосредственно в каждую конкретную скважину с помощью какого-либо механического приспособления. Ввод искусственной энергии в скважину достигается различными способами: компримированным (сжатым) газом и специальными механическими приспособлениями — глубинными насосами. При первом способе ввода энергии в скважину мы имеем дело с компрессорной эксплуатацией, при втором — с глубинно-насосной. Особое место занимают некоторые виды эксплуатации скважин, осуществляемые за счет использования природной энергии газа с применением специального подземного оборудования. К ним относятся: а) эксплуатация скважин бескомпрессорным газлифтом, теоретические основы подъема смеси при которой аналогичны таковым при фонтанно-компрессорной эксплуатации. Разница состоит в том, что для подъема используется газ высокого давления, добываемый либо попутно с нефтью, либо специально отбираемый из газоносных пропластков. В этом случае отпадает • необходимость использования компрессоров, б) эксплуатация скважин плунжерным лифтом, при которой подъем смеси происходит за счет природной энергии сжатого газа с применением специальных плунжеров, препятствующих потерям на относительное проскальзывание газа. Деление и сравнение способов глубинно-насосной эксплуатации будет рассмотрено в последующих главах. Подъем жидкости из скважин нефтяных месторождений практически всегда сопровождается выделением газа. Поэтому для понимания процессов подъема жидкости из скважин, умения проектировать установки для подъема и выбирать необходимое оборудование, надо знать законы движения газожидкостных смесей в трубах. При всех известных способах добычи нефти приходится иметь дело с движением газожидкостных смесей либо на всем пути от забоя до устья, либо на большей части этого пути. Эти законы сложнее законов движения однородных жидкостей в трубах и изучены хуже. Если при движении однофазного потока приходится иметь дело с одним коэффициентом трения очередь зависят от многих других параметров процесса и условий движения, многообразие которых чрезвычайно велико. Принципиальная схема газожидкостного подъемника показана на рис.3.1.
Приравнивая эти уравнения, в случае одинаковых давлений газа над жидкостью в трубах и водоеме (Р2=Р0), получаем h1p= h 1 pcм. Так как средняя плотность смеси жидкости и газа рсм меньше плотности жидкости р (рсм 1 >hr Для любого тела при постоянной массе плотность тем меньше, чем больше объем. Увеличивая объем газа в смеси (объемный расход его), уменьшаем плотность смеси и соответственно повышаем h 1 . Такая смесь может существовать только при движении одной или обеих фаз. Таким образом, принцип работы газожидкостного подъемника заключается в уменьшении плотности смеси в подъемных трубах. Эксперименты показали, что с увеличением расхода газа увеличивается высота подъема жидкости h 1 и при определенном расходе его начинается перелив жидкости (h 1 >L). Расход жидкости при увеличивающемся расходе газа сначала возрастает, достигает максимума, а затем уменьшается вплоть до нуля. Это связано с тем, что труба заданной длины L и диаметра d при постоянном перепаде давления Рис. 3.2. Зависимость подачи q подъемника, коэффициента полезного действия Графическая зависимость q(V0) получена при заданном относительном погружении труб под уровень жидкости: или с учетом противодавления Р2 на выкиде
где p*,u* — соответственно отношение плотностей и абсолютных вязкостей жидкости и газа; о — поверхностное натяжение на границе раздела газ-жидкость. Основным процессом в добыче нефти является процесс подъема на поверхность газожидкостной смеси от забоя скважины. Исходя из этого, можно сформулировать основную задачу эксплуатации скважин — осуществление процесса подъема продукции скважин с наибольшей эффективностью и бесперебойно. Подъем нефти в стволе скважины может происходить либо за счет природной энергии нефтяной залежи Wn, либо за счет энергии искусственно вводимой в скважину с поверхности Wu, либо за счет пластовой и искусственно вводимой в скважину с поверхности энергий Wn + Wu. Так как процесс движения продукции скважин от забоя до поверхности связан с определенными потерями, то сам процесс подъема возможен лишь при определенном соотношении энергии, которой обладает продукция скважины, и потерь энергии при ее движении. Основными видами потерь при движении газожидкостной смеси в скважине являются: 1. Потери энергии на преодоление веса гидростатического столба жидкости или смеси, W (без учета скольжения газа). 2. Потери энергии, связанные с движением ее по подъемным трубам и через устьевое оборудование, W . 3. Потери энергии за счет поддержания противодавления на устье скважины, необходимого для продвижения продукции скважины по наземным трубопроводам, W. Эта составляющая энергетического баланса не принимает никакого участия в процессе подъема, а представляет энергию, уносимую потоком жидкости за пределы устья скважины. Отсюда баланс энергии в работающей скважине можно записать в виде: Потери энергии, связанные с движением смеси по подъемным трубам и через устьевое оборудование Wлс, — потери на трение, связанные с движением смеси по трубе Wmр , и потери на трение, связанные с относительным скольжением газа в жидкости W ck ; — потери на местные сопротивления (движение смеси через муфтовые соединения труб и через устьевую арматуру) W mc — инерционные потери, связанные с ускоренным движением смеси Wин. С учетом этого выражение (3.6) может быть переписано следующим образом: Анализ исследований, проведенных в нефтяных скважинах, показывает, что составляющие WMc и W uh настолько малы в общем балансе энергии, что ими можно без большой погрешности пренебречь. Тогда окончательно баланс энергии в скважине можно записать:
Под фонтанной эксплуатацией понимается такой способ подъема продукции скважины от забоя на поверхность, при котором располагаемая энергия на забое W3a6 больше или равна энергии, расходуемой на преодоление различных сопротивлений W на всей длине скважины в процессе подъема, т.е. Основными источниками естественного фонтанирования являются потенциальная энергия жидкости Wж и газа Wг, выделяющегося из нефти при давлении, меньшем давления насыщения. Таким образом, естественное фонтанирование осуществляется только за счет природной энергии Wn, которой обладает продукция скважины на забое W3a6:
1-й тип — артезианское фонтанирование: Рз>Рнас , Ру>Рнас , то есть фонтанирование происходит за счет гидростатического напора (рис. 3.3, а). В скважине происходит перелив жидкости, по трубам движется негазированная жидкость. В затрубном пространстве между НКТ 1 и обсадной колонной 2 находится жидкость. Газ выделяется из нефти за пределами скважины в выкидной линии. Такое фонтанирование встречается крайне Рис. 3.3. Типы фонтанных скважин а — артезианская; б — газлифтная с началом выделения газа в скважине; в — газлифтная с началом выделения газа в пласте; 1 — подъемные трубы; 2 — эксплуатационная колонна. Н-й тип — газлифтное фонтанирование с началом выделения газа в стволе скважины: Рз >Рнас>Ру (рис. 3.3, б). В пласте движется негазированная жидкость, а в скважине, начиная с интервала, где давление становится равным давлению насыщения, движется газожидкостная смесь. По мере приближения к устью давление снижается, увеличивается количество свободного газа, происходит его расширение, растет газосодержание потока, то есть фонтанирование осуществляется по принципу работы газожидкостного подъемника. При давлении у башмака НКТ Р>Рнас в затрубном пространстве на устье находится газ и затрубное давление Рзатр обычно небольшое (0,1-0,5 МПа). Такой вид фонтанирования присущ большинству фонтанных скважин. Ш-й тип — газлифтное фонтанирование с началом выделения газа в пласте: Рнас>Р3 (рис. 3.3, в), в пласте движется газированная жидкость, на забой к башмаку НКТ поступает газожидкостная смесь. После начала притока основная часть газа увлекается потоком жидкости и поступает в НКТ. Часть газа отделяется и поступает в затрубное пространство, где он накапливается, при этом уровень жидкости снижается и достигает башмака НКТ. Со временем наступает стабилизация и уровень устанавливается у башмака НКТ. Затрубное давление газа, как правило, высокое, почти достигает значений Р1 и Р3. Чем меньше расход и вязкость жидкости, больше расход газа у башмака, зазор между НКТ и эксплуатационной колонной, тем больше газа сепарируется в затрубное пространство. Фонтанирование скважины возможно тогда, когда из пласта на забой поступает энергии не меньше, чем требуется ее для подъема флюидов на поверхность. Условие артезианского фонтанирования описывается следующим уравнением:
Потери давления на трение где Давление Р принимается в зависимости от условий нефтесбора. Оно обеспечивает движение продукции скважины от устья до пункта сбора, зависит от величины потерь давления на гидравлические сопротивления в устьевом оборудовании, системе сбора и т. д. В силу неразрывности потока длительное фонтанирование возможно при условии равенства расходов притекающей из пласта Qпл и поднимающейся в стволе скважины Qпод жидкостей: Источник |