Основной способ деления клеток эукариот это

Делим на два

Митоз, мейоз и другие клеточные красоты

Фотография: ZEISS Microscopy / Flickr.com

Вчера биологи отмечали день рождения основателя цитогенетики Вальтера Флемминга. Он впервые обнаружил в клетке интенсивно окрашивающиеся структуры и назвал их хроматином. Позднее он обнаружил связь хроматина с хромосомами, которые получили свое современное название благодаря немецкому анатому и гистологу Генриху Вильгельму Вальдейеру. Особую известность Флеммингу принесли его исследования строения и деления клетки. Флемминг впервые ввел термин «митоз», обозначающий непрямое деление клетки.

Мы подготовили иллюстрированный обзор главных объектов исследования Флемминга.

Электронная микроскопия клетки

Фотография: Itayba / Wikimedia Commons

У эукариотических клеток существет два способа деления: митоз и мейоз. Первый из них встречается гораздо чаще второго, но второй имеет ключевое значение для полового размножения.

Митоз — он же кариокинез или непрямое деление — это деление ядра эукариотической клетки с сохранением числа хромосом. У многоклеточных животных это единственный способ деления любых клеток за исключением половых. Для удобства изучения биологи делят митотический процесс на четыре стадии в за­висимости от того, как выглядят в это время хромосомы в све­товом микроскопе. В митозе выделяют профазу, метафазу, ана­фазу и телофазу.

В профазе происходит «архивирование», компактизация генетического материала перед делением; хромосомы спирализуются — укорачиваются и утолщаются и становятся заметны в световой микроскоп. На этом этапе они состоят из двух связанных между собой сестринских хроматид. Одновременно со спирализацией хромосом исчезает ядрышко и разрывается ядерная оболочка. После ее распада хромосомы свободно и беспорядочно лежат в цитоплазме. Центриоли расходятся к полюсам клетки. В конце профазы начинает формироваться веретено деления.

Источник

Митоз и мейоз

Жизненный цикл клетки (клеточный цикл)

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где «n» — число хромосом, а «c» — число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу — подготовку к делению клетки.

Разберем периоды интерфазы более подробно:

    Пресинтетический (постмитотический) период G1 — 2n2c

Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.

Синтетический период S — 2n4c

Длится 6-10 часов. Важнейшее событие этого периода — удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК — гистоны.

Постсинтетический (премитотический) период G2 — 2n4c

Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу — делению клетки, синтезируются белки и АТФ, удваиваются центриоли, делятся митохондрии и хлоропласты.

Митоз (греч. μίτος — нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры — хромосомы — происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
  • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
  • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления
Читайте также:  Как одевать снуд ребенку способы

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним — дочерние хромосомы) к полюсам клетки.

В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.

  • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
  • Появляется ядерная оболочка, формируется ядро
  • Разрушаются нити веретена деления

В телофазе происходит деление цитоплазмы — цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений — формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид — 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

Биологическое значение митоза очень существенно:

  • В результате митоза образуются дочерние клетки — генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки — способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio — уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление — эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде интерфазы) количеством ДНК — 2n4c.

    Профаза мейоза I

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

Конъюгация (лат. conjugatio — соединение) — сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом — биваленты (лат. bi — двойной и valens — сильный).

После конъюгации становится возможен следующий процесс — кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

Читайте также:  Рецепт помидоров холодным способом с сахаром

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки — n2c, за счет чего мейоз I и называется редукционным делением.

Происходит цитокинез — деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением — мейозом II.

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку — nc. В этом и состоит сущность мейоза — образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки — половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число — 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) 😉

Итак, самое время обсудить биологическое значение мейоза:

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками — материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам — бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ — частица отрицания и μίτος — нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется «как кому повезет» — случайным образом.

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Основные типы деления эукариотических клеток

Жизненный цикл клетки

Весь период существования – от возникновения до деления или гибели клетки называют клеточным циклом.

Вновь появившаяся клетка первоначально растет, дифференцируется, выполняет свои специфические функции – это время – период покоя.

Читайте также:  Матричный способ решения систем линейных уравнений 4 порядка

Образование клеток возможно только путем деления, поэтому важной частью ЖЦК является митотический цикл, включающий подготовку к делению (интерфазу) и само деление.

Интерфаза включает 3 периода –

· пресинтетический — G1— клетка растет, осуществляется синтез белка и РНК, накапливает богатые энергией в-ва. – продолжительность разная – около 10 часов в среднем.

· синтетический – G2 – удвоение генетического материала, необходима для того, чтобы вновь образовавшиеся клетки имели тот же геном, как и их предщественница.. продолжается синтез белка и РНК – около 9 часов.

· постсинтетический – G2 – клетка готовится к делению, накапливая энергию и белки, увеличивается кол-во митохондрий, делится центросома – фаза =4часа

продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, кислород, питательные в-ва. Бактериальные клетки могут делиться каждые 20 мин, клетки кишечного эпителия – каждые 8-10 часов, а многие клетки нервной системы – не делятся никогда.

· амитоз— прямое деление , делится путем прямой перетяжки, наследственный материал распределяется неравномерно. Возможно образование двухядерных клеток. Амитоз- редкое явление, характерен для погибающих или измененных клеток – например, опухолевых.

· митоз— непрямое деление соматических клеток – в результате деления образуются 2 её точные копии. в быстро делящихся клетках, например, эмбриональных, ЖЦ практически совпадает с митотическим циклом. Это универсальный способ увеличения кол-ва или замещения погибших эукариот.клеток

· мейоз – редукционное деление половых клеток. Оно приводит к уменьшению содержания наследственного материала во вновь образовавшихся клетках, при этом в родительской клетке происходит однократное удвоение хромосом (репликация ДНК, как при митозе), затем следуют 2 цикла клеточных и ядерных делений. т.о. сохраняется постоянство набора генетических структур у потомков при слиянии половых клеток родителей

Основы цитогенетики. Строение и типы метафазных хромосом.

Хромосома – структурный элемент клеточного ядра дезоксирибонуклеиновой природы.

Хромосомы человека впервые наблюдали Арнольд (1879) и Флеминг(1882) в периоде митоза. Затем многие ученые изучали эти структуры клеточного ядра. Однако, только в 1955г. Трио и Леван установили, что в большинстве клеток человека – 46 хромосом. Открытие в 1959г патологических изменений в наборе хромосом при болезни Дауна привело к возникновению нового раздела генетики человека – учения о хромосомных болезнях.

Хромосомы – (окрашенные тельца) формируются в начале деления клеток из хроматина интерфазного ядра. Х – основные носители наследственной информации, передаваемой из поколения в поколение у большинства живых организмов.

Хроматин состоит из молекул ДНК, связанных белками. Эти нити можно рассмотреть только в электронный микроскоп. Они составлены из расположенных друг за другом микрочастиц – нуклеосом, Ø10нм.

Нуклеосома имеет белковый остов, вокруг которого закручена молекула ДНК.

Во время деления нити хроматина сильно спирализуются, закручиваются и утолщаются, формируя видимые в световой микроскоп хромосомы. Имеет белковый остов вокруг которого закручена молекула ДНК.

Именно поэтому, основные сведения о строении хромосом были получены во время митоза.

Так как моменту деления хромосомы удвоены, то в световой микроскоп они видны состоящими из 2-х нитей – хроматид. Они объединены между собой в области первичной перетяжки – центромера –она делит хромосому поперек и на 2 части – плечи (которые бывают короткие и длинные)

В зависимости от расположения центромеры различают 3 типа хромосом:

· Метацентрические – центромера в центре, плечи равны.

· Субметацентрические – центромера сдвинута к одному концу хромосом, плечи 1

Источник

Оцените статью
Разные способы