Органические полимеры способы получения

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Структура полимеров

Полимеры состоят из множества мономеров. Они могут существовать в виде нескольких структур.

  • Линейная – звенья соединены последовательно (целлюлоза).
  • Разветвленная – звенья располагаются беспорядочно (крахмал).
  • Сетчатая – линейные молекулы связаны между собой (резина).

Макромолекулы могут состоять как из одинаковых, так и разных звеньев.

  • Гомополимеры – цепочка из одинаковых мономеров.
  • Сополимеры – цепочка из различных звеньев.

Полимеры состоят из структурных звеньев, которые представляют собой повторяющиеся группы атомов. Количество звеньев в высокомолекулярных соединениях определяется степенью полимеризации. В формуле (-СН2-)n степень обозначается буквой «n».

Классификация полимеров

В современной промышленности есть несколько десятков разновидностей полимеров, которые можно классифицировать по нескольким признакам.

По происхождению

  • Природные встречаются в естественных условиях (хлопок, лен).
  • Синтетические полимеры получают с помощью реакций полимеризации и поликонденсации (капрон).
  • Искусственные макромолекулы – результат модификации природных полимеров (вискоза – результат трансформации целлюлозы).

По химическому составу

  • Полиэфирные включают карбоксильную группу –СОО (лавсан).
  • Полиамидные содержат пептидные связи и функциональную группу –СО–NH2 (капрон).
  • Элементоорганические включают различные элементы из периодической таблицы Д.И. Менделеева (кремнийорганические полимеры).

Биологические полимеры

Полимеры встречаются не только в промышленности, но и в живой природе.

  • Сложные углеводы (цепочка сахаридов).
  • Белки(аминокислоты).
  • Целлюлоза из древесины.
  • Кератин, содержащийся в волосах.
  • Хитин наружного скелета членистоногих.

Способы получения полимеров

Полимеры можно получить в результате реакций полимеризации и поликонденсации.

Полимеризация

Полимеризация представляет собой реакцию присоединения. Это цепная реакция, состоящая из трех стадий – инициации, роста и обрыва цепи.

В качестве катализаторов реакции выступают натрий, пероксиды, комплексные соединения. В результате полимеризации образуются важнейшие соединения.

Поликонденсация

Поликонденсация представляет собой реакцию замещения, при которой выделяются побочные низкомолекулярные продукты. Поликонденсация – ступенчатая реакция. Полимеры образуются при последовательном взаимодействии мономеров, димеров или n-меров.

В результате поликонденсации образуются важнейшие высокомолекулярные соединения.

Физические свойства полимеров

Для полимеров характерно два состояния – кристаллическое для стереорегулярных макромолекул и аморфное для высокомолекулярных соединений с беспорядочным расположением звеньев. Все высокомолекулярные вещества обладают следующими свойствами.

  • Низкая теплопроводность (при нагревании металлической кастрюли пластмассовые ручки не плавятся).
  • Гибкость (нанесение на металлические пластины слой полимера).
  • Быстрое воспламенение (на открытом огне пластмасса быстро плавится и выделяет токсины).
  • Электроизоляционные свойства (вилки для розеток изготавливают из высокомолекулярных соединений).

По особенным термическим свойствам высокомолекулярные соединения классифицируются на две группы.

  • Термопластичные после воздействия высоких температур возвращаются в исходную форму.
  • Термореактивные после нагревания разрушаются.

Все полимеры находятся в жидком и твердом агрегатном состоянии. Они могут быть жидкостями (смазки, лаки, клеи, краски), эластичными материалами (резина, силикон, поролон) и твердыми пластмассами (полиэтилен, полипропилен).

Химические свойства

Реакции высокомолекулярных соединений определяются функциональной группой. Если в соединении есть гидроксогруппа-ОН, то полимер вступает в те же реакции, что и спирты. Если в макромолекуле присутствует карбоксильная группа –СООН, то для полимера характерны те же реакции, что и для карбоновых кислот.

Реакционная способность повышается при наличии двойных связей и функциональных групп. Также они обуславливают способность отдельных макромолекул сшиваться поперечными связями. Примерами образования поперечных связей могут быть вулканизация и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры.

Читайте также:  Аналитический способ описания движения определение

Применение полимеров

Первые материалы из полимеров появились в начале ХХ века. Краски и пленки производились при обработке целлюлозы и отходов нефтепереработки. Благодаря этому открытию начало развиваться кино. Сейчас из пластика изготавливаются детские игрушки, синтетические ткани, прорезиненная подошва для обуви, спортивный инвентарь, компьютерная техника и др.

Без полимеров невозможно представить цивилизацию. Каждый из них особенен и применяется во многих сферах.

  • Полиэтилен – упаковки, изоляция электропроводов, автомобильные детали, предохранение от коррозии нефтепроводов.
  • Полистирол – игрушки, детали техники, внутренняя облицовка салонов машин и самолетов, фурнитура, внешние детали электроники, посуда.
  • Поливинилхлорид – автомобильные детали, оборудование химической промышленности, искусственная кожа.
  • Поликарбонат – детали для электроники и автомобилей, материалы для строительства.
  • Эпоксидная смола – декоративные украшения, лаки, клей, ламинат.
  • Полиэстер – лампы, мачты, средства защиты, корпуса летательных аппаратов и машин.

Ученые космической отрасли создали летательные ракеты и спутники на основе полипропилена. При лабораторных испытаниях оказалось, что низкая масса этого сырья без особых усилий помогает преодолеть притяжение Земли, и при больших температурных перепадах в агрессивной среде пластмасса не деформируется.

Будущее полимеров

Высокомолекулярные соединения – будущее человечества. Но они могут быть не только полезны, но и опасны для людей. На данный момент в мире стоит проблема с утилизацией пластика, который долго разлагается и выделяет токсины. Мусором питаются обитатели морей и океанов, что отрицательно сказывается на природе.

Ученые борются с проблемой выбрасываемого пластика и разрабатывают «умные высокомолекулярные соединения», которые могут изменять структуру и свойства в зависимости от окружающей среды. Полимеры являются объектом исследования ученых. На данный момент ведутся следующие разработки.

  • Биоразлагаемые пленки, в состав которых входит кукурузный крахмал.
  • Упаковки, меняющие цвет в зависимости от срока годности товара и разлагающиеся без вреда для природы.
  • Эко-почва с гидрогелем для засушливых зон природного земледелия.
  • Полимерные жидкости, изменяющие свойства в зависимости от окружающей среды.
  • Фармацевтическая упаковка для доставки лекарственных средств непосредственно к больному органу внутри организма человека.

Человечество уже не может развиваться без полимерной продукции. Сейчас стоит вопрос о ее безопасности для экологии и переходе на новый уровень взаимодействия. Отказаться от пластика невозможно, но сократить его потребление и перейти на изделия из натуральных материалов возможно.

Источник

Полимеры

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).

Например , полиэтилен, получаемый при полимеризации этилена CH2=CH2:

…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2CH2-)n

Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.

Соединения, из которых образуются полимеры, называются мономерами.

Например , пропилен (пропен) СН2=СH–CH3 является мономером полипропилена

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

Мономеры – низкомолекулярные вещества, из которых образуются полимеры.

Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.

Классификация полимеров

Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.

Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.

Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.

Читайте также:  Способы нанесения декоративной штукатурки кельмой

Классификация по структуре

По структуре полимеры делятся на: линейные, разветвленные и пространственные.

Линейные Разветвленные Пространственные
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру.

Целлюлоза, полиэтилен низкого давления, капрон

Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной

Химические связи имеются и между цепями, образуя пространственную структуру

Резина, фенолформальдегидные смолы

Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).

Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).

Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).

Классификация по происхождению

По способу получения полимеры делятся на: природные, синтетические и искусственные.

Природные волокна Синтетические волокна Искусственные
Непосредственно существуют в природе
  • хлопок
  • шерсть
  • натуральный шелк
Получают полностью химическим путем в реакциях полимеризации и поликонденсации
  • капрон
  • найлон
  • лавсан
Получают модификацией натуральных полимеров
  • ацетатное волокно
  • целлулоид
  • вискоза

Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).

Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.

Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).

Классификация по химическому характеру

По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).

Полиэфирные полимеры Полиамидные полимеры Элементоорганические
Содержат группу -СОО-

Лавсан (полиэтилентерефталат)

Содержат группу -СО-NH2

Найлон, капрон

Содержат атомы других хим. элементов (кремний и др.).

Кремнийорганические полимеры

Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.

Полиамидные полимеры — содержат пептидную связь -СО-NH2-.

Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).

Классификация по способу получения

Полимеры получают либо реакциями полимеризации, либо поликонденсацией.

Полимеризация Поликонденсация
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются.

Полиэтилен, полипропилен и др.

Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт.

Фенолформальдегидная смола, капрон

Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера.

Например , образование полиэтилена происходит по механизму полимеризации:

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода).

Например , образование капрона протекает по механизму поликонденсации:

Свойства полимеров

По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.

Термореактивные Термопластичные Эластомеры
Неплавкие и неэластичные материалы.

Фенолформальдегидные смолы, полиуретан

Меняют форму при нагревании и сохраняют её.

Полиэтилен, полистирол, поливинилхлорид

Эластичные вещества при разных температурах.

Натуральный каучук, полихлоропрен


Термореактивные полимеры
— пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.

Например , фенолформальдегидные смолы, полиуретан.

Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.

Например , полиэтилен, полистирол, полихлорвинил и т.д.

Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.

Например , натуральный каучук.

Полимеризация и поликонденсация

Полимеризация

Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2CH2–)n

Характерные признаки полимеризации.
  1. В основе полимеризации лежит реакция присоединения.
  2. Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
  3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.

Например , схема сополимеризации этилена с пропиленом:

Важнейшие синтетические полимеры

Изображение с портала orgchem.ru

Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:

Полимер Мономер Характеристики полимера Применение полимера
Полиэтилен

(–СН2–СН2–)n

Этилен

СН2=СН2

Синтетический, линейный, термопластичный, химически стойкий Упаковка, тара
Полипропилен

Пропилен

СН2=СН–СН3

Синтетический, линейный, термопластичный, химически стойкий Трубы, упаковка, ткань (нетканый материал)
Поливинилхлорид

Винилхлорид

СН2=СН–Сl

Синтетический линейный полимер, т ермопластичный Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д
Полистирол

Стирол

Синтетический линейный полимер, термопластичный Упаковка, посуда, потолочные панели
Полиметилметакрилат

Метиловый эфир метакриловой кислоты

Синтетический линейный полимер, т ермопластичный Очки, корпуса фар и светильников, душевые кабины, мебель и т.д
Тефлон (политетрафторэтилен)

Тетрафторэтилен

Синтетический линейный полимер.

Термопластичный (t = 260-320 0 C)

Обладает очень высокой химической стойкостью

Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция
Искусственный каучук

Мономер: бутадиен-1,3 (дивинил)

Синтетический, линейный, эластомер, содержит двойные связи Резина, изоляция, различные материалы, ракетное топливо
Натуральный каучук

Природный, линейный, эластомер, содержит двойные связи Резина, изоляция, различные материалы, ракетное топливо
Хлоропреновый каучук

Синтетический, линейный, эластомер, содержит двойные связи Резина, изоляция, различные материалы, ракетное топливо
Бутадиен-стирольный каучук

Мономеры: бутадиен-1,3 и стирол

Синтетический, эластомер Резина, изоляция, различные материалы, ракетное топливо
Полиакрилонитрил

Акрилонитрил

Синтетический, линейный Волокна, пластмассы

Поликонденсация

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода.
Характерные признаки поликонденсации.

  1. В основе поликонденсации лежит реакция замещения.
  2. Поликонденсация – процесс ступенчатый, т.к. образование макромолекул происходит в результате последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом.
  3. Помимо высокомолекулярного соединения, в реакции поликонденсации образуется второе, низкомолекулярное вещество (обычно это вода).

Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:

Полимер и м ономер Характеристики полимера Применение полимера
Капрон

Мономер: 6-аминокапроновая кислота (лактам)

Синтетический, линейный, термопластичный, очень эластичный Полиамидные волокна (нитки, ткани, парашюты, втулки и т.д.)
Найлон

Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая)

Синтетический, полиамидный, линейный, термопластичный Изготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно)
Лавсан (полиэтилентерефталат)

Мономер: Этиленгликоль, терефталевая кислота

Синтетический линейный полимер, т ермопластичный, полиэфирный Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д
Фенолформальдегидная смола

Мономеры: фенол и формальдегид

Синтетический, пространственный (сетчатый) полимер Производство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями
Крахмал

Мономер: α-глюкоза

Природный, полиэфирный, разветвленный Пищевая, текстильная, бумажная промышленность, фармацевтика и др.
Целлюлоза

Мономер: β-глюкоза

Природный, полиэфирный, линейный Производство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др.
ДНК

Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания

Природный, полиэфирный, линейный Функционирование живых организмов
РНК

Мономер: Рибоза, ортофосфорная кислота, азотистые основания

Источник

Читайте также:  Компенсация морального вреда понятие основание способ размер
Оцените статью
Разные способы