Органическая химия способы получения алканов

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Распространение углеводородов

Углеводороды содержатся везде: от недр земли до атмосфер других планет. Например, в атмосферах Юпитера, Сатурна, Урана и Нептуна присутствует метан. Помимо планет, углеводороды содержатся в других космических объектах, например в хвостах комет и метеоритах.

Алканы

Алканы – это углеводороды, в которых все связи одинарные. Также их называют предельными (или насыщенными) углеводородами.

Все атомы углерода находятся в sp 3 -гибридизации.

Чтобы указать элементарный состав алканов, используют общую формулу: CnH2n+2 .

Для примера рассмотрим, каким образом можно записать несколько элементарных формул, в которых 1,2 и 3 атомов углерода.

Пользуясь выражением CnH2n+2, запишем:

Рисунок 1 – Гибридизация алканов

Следует заметить, что у алканов наблюдается структурная изомерия:

Номенклатура алканов

Номенклатура – это правило, по которому даются названия органическим веществам.

Для того, чтобы назвать молекулу органического вещества, необходимо учесть длину углеродной цепи, наличие кратных связей в молекуле, количество заместителей и их состав, а также наличие функциональных групп.

Заместители могут быть представлены атомами галогенов (хлор, бром, иод, фтор) или углеводородной частицей, которую называют «радикалом».

Понятие радикала

Радикал – углеводородная частица, в которой 1 из атомов углерода содержит 1 неспаренный электрон. Этот неспаренный электрон может образовать связь с углеродной цепочкой, функциональной группой или другим атомом. Для записи радикала используют символ: R, и в общем случае называют алкилом.

Название радикала зависит от количества атомов углерода в нем, для каждого из которых был предложен собственный корень. К корню добавляется суффикс –ил, тем самым образуя полное название радикала.

В таблице 1 представлено, какие корни используются для названия веществ, содержащих конкретное число атомов в углеродной цепочке.

Таблица 1. – Названия углеводородных заместителей

Для названия ряда алканов используется тот же метод, только вместо суффикса –ил, ставится суффикс –ан.

Представленный ряд веществ одного класса соединений называется гомологическим рядом (в нем каждый последующий элемент, называемый гомологом, отличается от предыдущего на 1 группу СН2).

Алгоритм названия алканов с заместителями

Чтобы назвать алкан, у которого есть один или несколько заместителей, следует придерживаться следующего алгоритма:

  1. Выбирается самый длинный участок углеродного скелета, и нумеруются атомы углерода.
  2. Нумерация, в соответствии с правилом, начинается с того конца, к которому заместитель ближе.Называть молекулу начинают с номера атома углерода, у которого стоит заместитель и его названия. Если одинаковых заместителей несколько, то сначала через запятые указываются номера атомов углерода, при которых стоит этот заместитель, а затем через дефис записывается число заместителя и его название. Числа записывают так, как указано в таблице 2.
  3. В соответствии с числом пронумерованных атомов углерода выбирается корень названия радикала.
  4. К концу корня приписывается суффикс –ан.

Таблица 2. – число и его запись при перечислении заместителей

Для примера назовем молекулу алкана в соответствии с алгоритмом.

Допустим, есть молекула, которая имеет вид:

  1. Находим самую длинную цепь и нумеруем атомы углерода в ней.
  1. Видим, что в молекуле есть заместители, смотрим: какие они и у каких атомов стоят. Видно, что у 2 и 8 атома стоят метил-радикалы, а у 5 атома – пропил-радикал.Записываем начало названия молекулы: 2,8-диметил-5-пропил.
  2. Теперь необходимо поставить корень и суффикс названия. Корень зависит от числа атомов углерода в цепочке. Здесь их 9, поэтому корень нон-. Так как у нас алкан, то суффикс – -ан.
  3. Запишем полное название:2,8-диметил-5-пропилнонан.

Галоген производные алканов

Галогенпроизводные алканов (их еще называют алкилгалонегидами) – вещества, у которых есть заместитель в виде атома галогена.

Более строгое понятие: алкилгалогенид – это углеводород, у которого 1 или более атомов водорода замещен на атом галогена.

Читайте также:  Операционный риск способы управления

Номенклатура галогенпроизводных алканов такая же, как и у алканов, только в качестве заместителя нужно указывать название галогена.

Например, названия веществ А и Б:2,3-дихлорбутан и 2-метил-3-хлорбутан.

Физические свойства алканов

Свойства алканов зависят от их структурного строения и количества атомов углерода в углеродном скелете. С их увеличением, агрегатное состояние меняется от газообразного до жидкого и твердого, а так же увеличивается плотность и температуры кипения и плавления, что отображено по таблицам ниже.

Рассмотрим физические свойства алканов.

По агрегатным состояниям алканы могут быть газами, жидкостями и твердыми веществами. Это зависит от длины углеродного скелета.

Следует отметить, что алканы хорошо растворимы в органических растворителях (например, в четыреххлористом углероде) и нерастворимы в воде. Алканы, имеющие строение разветвленного типа, обладают низкими температурами кипения, в отличие от линейных алканов.

Таблица температуры кипения алканов

Получение алканов

Некоторые алканы можно добывать напрямую из недр земли попутно с добычей нефти. В основном, так добывают метан. Недостаток этого способа – наличие загрязнений в газе, от которых довольно сложно избавиться, и к тому же для такой добычи нужно строить трубопроводы и другие установки для транспортировки.

Поэтому были предложены иные методы, которые позволили получать различные алканы с помощью химических реакций из других химических соединений.

Химические реакции способов получения алканов

Запомним, что в органической химии реакции записываются таким образом, чтобы слева были исходные органические компоненты, а справа продукт, который необходимо получить.

В отличие от неорганической химии, знак равенства между правой и левой частью уравнения не ставится, а заменяется стрелками. Это связано с тем, что в органической химии важно именно то, из какого вещества получился целевой продукт, при этом не так важно мольное соотношение компонентов. Коэффициенты можно встретить в случаях, когда, например, из 2 или 3 одинаковых молекул образуется одна новая.

Над стрелкой указываются условия, при которых происходит конкретная реакция. Это может быть температура, давление, неорганическое вещество или катализатор. Под стрелкой, со знаком «минус», указывается выделившийся побочный продукт химической реакции.

Теперь рассмотрим конкретно, с помощью каких реакций получают алканы.

  1. Реакции гидрирования алкенов:

Уточним, что гидрирование – это реакция присоединения органическим веществом водорода. Обычно, он присоединяется по кратной связи.

  1. Реакция Вюрца. Некоторые реакции являются именными, т.е. им присвоено имя ученого, который первым их предложил. При получении алканов данным методом в качестве реагента используется алкилгалогенид (т.е. органическое вещество, содержащее хлор, бром или иод в качестве заместителя). Реакция проводится под действием металлического натрия и при повышенной температуре. Побочным продуктом выделяется NaCl, и образуется алкан вида R-R:
  1. Реакция восстановления галогенпроизводных алканов. Для получения алканов таким способом используется алкилгалогенид, который взаимодействует на железном катализаторе при высоких температурах с водородом. В результате этой реакции атом галогена в алкилгалогениде замещается на атом водорода. Побочным продуктом выделяется галогенводородная кислота.
  1. Реакция Дюма. При взаимодействии твердой соли карбоновой кислоты с твердой щелочью при нагревании выделяется газообразный алкан. В качестве побочного продукта образуется карбонат щелочного металла. Вспомним, что щелочные металлы – К, Na, Li, а газообразные алканы имеют в своем составе от 1 до 4 атомов углерода.
  1. Реакция электролиза. При проведении электрического тока через раствор соли карбоновой кислоты, выделяется алкан, и в качестве побочных продуктов образуются щелочь, углекислый газ и водород.
  1. Реакция Гриньяра. Для синтеза алканов таким способом используются определенные вещества, называемые реактивами Гриньяра, которое представляет собой радикал, соединенный с MgCl-группой. Реактив Гриньяра взаимодействует с алкилгалогенидом, в результате образуется алкан, длина цепи которого равна сумме атомов углерода у реактива Гриньяра и алкилгалогенида.

Определенные методы синтеза метана

Метан, в отличие от других алканов, можно получать и другими реакциями, которые рассмотрим ниже.

  1. Гидролиз карбида алюминия. Если чистый карбид алюминия опустить в воду, то начнет протекать необратимая реакция, в результате выделяется газообразный метан и образуется осадок гидроксида алюминия.
  1. Гидрирование углерода. Чистый углерод напрямую взаимодействует с водородом, но для этого необходимы условия: повышенная температура и использование катализатора из металлического никеля.
  1. Термокаталитическое восстановление оксидов углерода. Аналогично чистому углероду и при таких же условиях, его оксиды взаимодействуют с водородом, и также в результате реакции образуется метан. Побочным продуктом будет выделяться вода.
Читайте также:  Алгель способ применения гель

Химические реакции алканов

Алканы могут вступать в 2 типа химических реакций: замещения и разложения. Это вызвано тем, что алканы – насыщенные углеводороды и присоединить к себе другие вещества не могут, поскольку все связи заняты.

Рассмотрим химические свойства алканов реакциями, представленными ниже.

Реакции замещения

  1. Галогенирование. Реакция присоединения галогена (хлора, брома, иода), называется галогенированием. В результате данной реакции образуется алкилгалогенид и побочный продукт – галогенводородная кислота.
  1. Реакция Коновалова. При взаимодействии алкана с 10% раствором азотной кислоты образуется нитро-алкан и вода в качестве побочного продукта. Реакция проходит при повышенной температуре.

Реакции разложения

  1. Реакция полного горения. Под полным горением подразумевается, что вещество горит в избытке кислорода. При таком взаимодействии образуется углекислый газ и вода.
  1. Реакция неполного горения. Под неполным горением подразумевается, что вещество горит при недостатке кислорода. В результате такой реакции образуется угарный газ и вода.
  1. Реакция полного дегидрирования. Дегидрирование – реакция разложения, в результате которой выделяется газообразный водород. Эта реакция характерна для алканов, которые по своему агрегатному состоянию являются газами. Реакция проходит под воздействием высоких температур. При полном дегидрировании выделяется чистый углерод (в виде сажи) и газообразный водород.
  1. Реакция неполного дегидрирования. Под воздействием окислителя оксида хрома (III) при высокой температуре алкан превращается в алкен.
  1. Реакция крекинга. Крекинг – разложение углеводородов с большим числом атомов в углеродом скелете при высоких температурах и давлениях. Обычно, в результате крекинга образуется целая смесь газообразных углеводородов с меньшим количеством атомов углерода в цепочке.

Реакции окисления

  1. Реакции окисления метана. Под воздействием различных катализаторов метан может превращаться в метиловый спирт, формальдегид или метановую кислоту, о которых будет рассказано на последующих уроках. Катализатор в общем виде обозначается, как kat.

Применение алканов

Алканы используют в качестве топлива. Например, газовые плиты в квартирах работают при сжигании метана.

Из них делают резины и типографических краски, а так же получают синтетический бензин.

Как было рассмотрено выше, алканы являются сырьем для производства других органических соединений, т.е. участвуют в цепочке органического синтеза.

Также алканы используют для получения парафиновых свечей и веществ, позволяющих поддерживать холод в морозильных камерах.

Источник

Химические свойства алканов

Алканы – это предельные углеводороды, содержащие только одинарные связи между атомами С–С в молекуле, т.е. содержащие максимальное количество водорода.

Алканы – предельные углеводороды, поэтому они не могут вступать в реакции присоединения.

Для предельных углеводородов характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Поэтому для алканов характерны только радикальные реакции.

Алканы устойчивы к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагируют с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения.

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование.

Алканы реагируют с хлором и бромом на свету или при нагревании.

При хлорировании метана сначала образуется хлорметан:

Хлорметан может взаимодействовать с хлором и дальше с образованием дихлорметана, трихлорметана и тетрахлорметана:

Химическая активность хлора выше, чем активность брома, поэтому хлорирование протекает быстро и неизбирательно.

При хлорировании алканов с углеродным скелетом, содержащим более 3 атомов углерода, образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании 2-метилпропана преимущественно образуется 2-бром-2-метилпропан:

Реакции замещения в алканах протекают по свободнорадикальному механизму.

Свободные радикалы R∙ – это атомы или группы связанных между собой атомов, которые содержат неспаренный электрон.

Первая стадия. Инициирование цепи.

Под действием кванта света или при нагревании молекула галогена разрывается на два радикала:

Свободные радикалы – очень активные частицы, которые стремятся образовать связь с каким-либо другим атомом.

Вторая стадия. Развитие цепи.

Радикал галогена взаимодействует с молекулой алкана и отрывает от него водород.

При этом образуется промежуточная частица – алкильный радикал, который в свою очередь взаимодействует с новой нераспавшейся молекулой хлора:

Третья стадия. Обрыв цепи.

При протекании цепного процесса рано или поздно радикалы сталкиваются с радикалами, образуя молекулы, радикальный процесс обрывается.

Могут столкнуться как одинаковые, так и разные радикалы, в том числе два метильных радикала:

1.2. Нитрование алканов.

Алканы взаимодействуют с разбавленной азотной кислотой по радикальному механизму, при нагревании до 140 о С и под давлением. Атом водорода в алкане замещается на нитрогруппу NO2.

При этом процесс протекает также избирательно.

С третичный–Н > С вторичный–Н > С первичный–Н

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Реакции разложения.

2.1. Дегидрирование и дегидроциклизация.

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

Уравнение дегидрирования алканов в общем виде:

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании этана образуются этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

Алканы с более длинным углеродным скелетом, содержащие 5 и более атомов углерода в главной цепи, при дегидрировании образуют циклические соединения.

При этом протекает дегидроциклизация – процесс отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

2.2. Пиролиз (дегидрирование) метана .

При медленном и длительном нагревании до 1500 о С метан разлагается до простых веществ:

Если процесс нагревания метана проводить очень быстро (примерно 0,01 с), то происходит межмолекулярное дегидрирование и образуется ацетилен:

Пиролиз метана – промышленный способ получения ацетилена.

2.3. Крекинг.

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Реакции окисления алканов.

Алканы – малополярные соединения, поэтому при обычных условиях они не окисляются даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение.

Алканы горят с образованием углекислого газа и воды. Реакция горения алканов сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении алканов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Например, горение пропана в недостатке кислорода:

Промышленное значение имеет реакция окисления метана кислородом до простого вещества – углерода:

Эта реакция используется для получения сажи.

3.2. Каталитическое окисление.

  • Каталитическое окисление бутана – промышленный способ получения уксусной кислоты:

  • При каталитическом окислении метана кислородом возможно образование различных продуктов в зависимости от условий проведения процесса и катализатора. Возможно образование метанола, муравьиного альдегида или муравьиной кислоты:

  • Важное значение в промышленности имеет паровая конверсия метана: окисление метана водяным паром при высокой температуре.

Продукт реакции – так называемый «синтез-газ».

4. Изомеризация алканов.

Под действием катализатора и при нагревании неразветвленные алканы, содержащие не менее четырех атомов углерода в основной цепи, могут превращаться в более разветвленные алканы.

Источник

Читайте также:  Засолка огурцов горячим способом под капроновую крышку
Оцените статью
Разные способы