Определитель матрицы способом саррюса

Нахождение определителя матрицы 3 порядка

Определитель матрицы 3 порядка, описание

Детерминант или определитель матрицы третьего порядка вида \(A=\begina_<11>&a_<12>&a_<13>\\a_<21>&a_<22>&a_<23>\\a_<31>&a_<32>&a_<33>\end\) является сопоставляемое с ним число

Для обозначения данной величины используют символы: |А|, Δ, det A.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Правила для нахождения

Для вычисления детерминанта матрицы 3×3 не нужно заучивать формулу. Данное число можно найти с помощью двух способов:

  • правила треугольников;
  • правила Саррюса.

Нахождение методом треугольника

Правило основывается на том, что произведение диагональных составляющих и произведения вершин двух треугольников уменьшаемой матрицы суммируются. Произведение диагональных элементов и произведения вершин треугольников в вычитаемой матрице записываются со знаком минус.

Схематическое изображение рассматриваемого правила выглядит так:

По схеме можно восстановить формулу нахождения определителя матрицы третьего порядка, которая приведена в определении детерминанта:

Пример

Найти определитель матрицы:

Решение

Метод Саррюса

Для нахождения определителя матрицы 3×3 необходимо соблюсти условия в следующей последовательности:

  • два первых столбца приписать по левую сторону от детерминанта;
  • произведения компонентов главной диагонали и ей параллельных записать с положительным знаком;
  • произведения элементов, расположенных на побочной и параллельных ей диагоналях, записать с отрицательным знаком.

Вычисление определителя матрицы по рассматриваемому правилу схематически можно изобразить так:

Пример

Рассчитать по методу Сюрраса детерминант матрицы

Источник

Определитель матрицы: алгоритм и примеры вычисления определителя матрицы

Определитель (детерминант) матрицы — некоторое число, с которым можно сопоставить любую квадратную матрицу А = ( a i j ) n × n .

|А|, ∆ , det A — символы, которыми обозначают определитель матрицы.

Способ вычисления определителя выбирают в зависимости от порядка матрицы.

Определитель матрицы 2-го порядка вычисляют по формуле:

d e t A = 1 — 2 3 1 = 1 × 1 — 3 × ( — 2 ) = 1 + 6 = 7

Определитель матрицы 3-го порядка: правило треугольника

Чтобы найти определитель матрицы 3-го порядка, необходимо одно из правил:

  • правило треугольника;
  • правило Саррюса.

Как найти определитель матрицы 3-го порядка по методу треугольника?

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 1 5 — 1

d e t A = 1 3 4 0 2 1 1 5 — 1 = 1 × 2 × ( — 2 ) + 1 × 3 × 1 + 4 × 0 × 5 — 1 × 2 × 4 — 0 × 3 × ( — 1 ) — 5 × 1 × 1 = ( — 2 ) + 3 + 0 — 8 — 0 — 5 = — 12

Читайте также:  Размер платы за жилое помещение при способе управления тсж устанавливается

Правило Саррюса

Чтобы вычислить определитель по методу Саррюса, необходимо учесть некоторые условия и выполнить следующие действия:

  • дописать слева от определителя два первых столбца;
  • перемножить элементы, которые расположены на главной диагонали и параллельных ей диагоналях, взяв произведения со знаком «+»;
  • перемножить элементы, которые расположены на побочных диагоналях и параллельных им, взяв произведения со знаком «—».

а 11 а 12 а 13 а 21 а 22 а 23 а 31 а 32 а 33 = a 11 × a 22 × a 33 + a 31 × a 12 × a 23 + a 21 × a 32 × a 13 — a 31 × a 22 × a 13 — a 21 × a 12 × a 33 — a 11 × a 23 × a 32

А = 1 3 4 0 2 1 — 2 5 — 1 1 3 0 2 — 2 5 = 1 × 2 × ( — 1 ) + 3 × 1 × ( — 2 ) + 4 × 0 × 5 — 4 × 2 × ( — 2 ) — 1 × 1 × 5 — 3 × 0 × ( — 1 ) = — 2 — 6 + 0 + 16 — 5 — 0 = 3

Методы разложения по элементам строки и столбца

Чтобы вычислить определитель матрицу 4-го порядка, можно воспользоваться одним из 2-х способов:

  • разложением по элементам строки;
  • разложением по элементам столбца.

Представленные способы определяют вычисление определителя n как вычисление определителя порядка n-1 за счет представления определителя суммой произведений элементов строки (столбца) на их алгебраические дополнения.

Разложение матрицы по элементам строки:

d e t A = a i 1 × A i 1 + a i 2 × A i 2 + . . . + а i n × А i n

Разложение матрицы по элементам столбца:

d e t A = а 1 i × А 1 i + а 2 i × А 2 i + . . . + а n i × А n i

Если раскладывать матрицу по элементам строки (столбца), необходимо выбирать строку (столбец), в которой(-ом) есть нули.

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0

  • раскладываем по 2-ой строке:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 2 × ( — 1 ) 3 × 1 — 1 3 — 2 5 1 3 1 0 = — 2 × 1 — 1 3 4 5 1 2 1 0 + 1 × 0 — 1 3 — 2 5 1 3 1 0

  • раскладываем по 4-му столбцу:

А = 0 1 — 1 3 2 1 0 0 — 2 4 5 1 3 2 1 0 = 3 × ( — 1 ) 5 × 2 1 0 — 2 4 5 3 2 1 + 1 × ( — 1 ) 7 × 0 1 — 1 2 1 0 3 2 1 = — 3 × 2 1 0 — 2 4 5 3 2 1 — 1 × 0 1 — 1 2 1 0 3 2 1

Свойства определителя

  • если преобразовывать столбцы или строки незначительными действиями, то это не влияет на значение определителя;
  • если поменять местами строки и столбцы, то знак поменяется на противоположный;
  • определитель треугольной матрицы представляет собой произведение элементов, которые расположены на главной диагонали.

Пример 6

А = 1 3 4 0 2 1 0 0 5

d e t А = 1 3 4 0 2 1 0 0 5 = 1 × 5 × 2 = 10

Определитель матрицы, который содержит нулевой столбец, равняется нулю.

Источник

Методы вычисления определителей

В общем случае правило вычисления определителей $n$-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Задание. Вычислить определитель второго порядка $\left| \begin <11>& <-2>\\ <7>& <5>\end\right|$

Решение. $\left| \begin <11>& <-2>\\ <7>& <5>\end\right|=11 \cdot 5-(-2) \cdot 7=55+14=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Читайте также:  Способы охраны окружающей среды от газа

Методы вычисления определителей не по зубам? Тебе ответит эксперт через 10 минут!

Задание. Вычислить определитель $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|$ методом треугольников.

Решение. $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|=3 \cdot 1 \cdot(-2)+4 \cdot(-2) \cdot(-1)+$

$$+3 \cdot 3 \cdot 1-(-1) \cdot 1 \cdot 1-3 \cdot(-2) \cdot 3-4 \cdot 3 \cdot(-2)=54$$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Задание. Вычислить определитель $\left| \begin <3>& <3>& <-1>\\ <4>& <1>& <3>\\ <1>& <-2>& <-2>\end\right|$ с помощью правила Саррюса.

Решение.

$$+(-1) \cdot 4 \cdot(-2)-(-1) \cdot 1 \cdot 1-3 \cdot 3 \cdot(-2)-3 \cdot 4 \cdot(-2)=54$$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Задание. Разложив по первой строке, вычислить определитель $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right|$

Решение. $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right| \leftarrow=a_ <11>\cdot A_<11>+a_ <12>\cdot A_<12>+a_ <13>\cdot A_<13>=$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Задание. Вычислить определитель $\left| \begin <1>& <2>& <3>\\ <4>& <5>& <6>\\ <7>& <8>& <9>\end\right|$

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Задание. Вычислить определитель $\left| \begin <9>& <8>& <7>& <6>\\ <5>& <4>& <3>& <2>\\ <1>& <0>& <1>& <2>\\ <3>& <4>& <5>& <6>\end\right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

$$=4 \cdot(2 \cdot 8-4 \cdot 4)=0$$

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Читайте также:  100 способ от седины

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Задание. Вычислить определитель $\Delta=\left| \begin <-2>& <1>& <3>& <2>\\ <3>& <0>& <-1>& <2>\\ <-5>& <2>& <3>& <0>\\ <4>& <-1>& <2>& <-3>\end\right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования будет выполнять проще, если элемент $a_<11>$ будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получим нули в первом столбце, кроме элемента $a_<11>$ , для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен $\pm 1$ , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом: к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под главной диагональю, а для этого к последней строке прибавляем третью:

Ответ. $\Delta=-80$

Теорема Лапласа

Пусть $\Delta$ — определитель $n$-го порядка. Выберем в нем произвольные $k$ строк (или столбцов), причем $k \leq n-1$ . Тогда сумма произведений всех миноров $k$-го порядка, которые содержатся в выбранных $k$ строках (столбцах), на их алгебраические дополнения равна определителю.

Задание. Используя теорему Лапласа, вычислить определитель $\left| \begin <2>& <3>& <0>& <4>& <5>\\ <0>& <1>& <0>& <-1>& <2>\\ <3>& <2>& <1>& <0>& <1>\\ <0>& <4>& <0>& <-5>& <0>\\ <1>& <1>& <2>& <-2>& <1>\end\right|$

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Источник

Способы вычисления определителя матрицы

У любой квадратной матрицы есть определитель, который можно найти. В данной статье мы разберем способы нахождения этого значения, для чего приведем конкретный пример (для наглядности мы выделили все столбцы разными цветами).

Рассмотрим такую систему уравнений:

Выписываем матрицу, для которой необходимо найти определитель:

1. Правило Пьера Фредерика Саррюса

1.1. Раскрываем матрицу так, как показано ниже.

1.2. В пустых промежутках необходимо продолжить матрицу.

1.3. Каждую тройку чисел необходимо перемножить между собой (ВАЖНО! Цвета в тройках не должны повторяться), после чего мы складываем полученные числа и вычитаем вторую часть из первой:

2. Вычисление определителя, используя разложение по строке (столбцу)

3. Правило треугольника

Иллюстрация метода треугольника выглядит так:

Таким образом, каждый из этих способов может быть использован в вычислении определителя.

Источник

Оцените статью
Разные способы