Определите средний размер вклада используя способ моментов

Задача №6. Расчёт показателей вариации

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Размер вклада, руб. До 400 400 — 600 600 — 800 800 — 1000 Свыше 1000
Число вкладчиков 32 56 120 104 88

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

Размер вклада, руб. 200 — 400 400 — 600 600 — 800 800 — 1000 1000 — 1200
Число вкладчиков 32 56 120 104 88

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго — 500 и т. д.

Занесём результаты вычислений в таблицу:

Читайте также:  70t каким способом задана данная функция
Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия — это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 23040000
Читайте также:  Способ кодирования информации с помощью символов такого же алфавита что

5) Среднее квадратическое отклонение размера вклада определяется как корень квадратный из дисперсии:

6) Коэффициент вариации — это отношение среднего квадратического отклонения к средней арифметической:

По величине коэффициента вариации можно судить о степени вариации признаков совокупности. Чем больше его величина, тем больше разброс значений признаков вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя.

Источник

Задача по статистике S-15

Номер задачи: S-15

Решение: бесплатно

По следующим данным о распределении 100 работников банка по величине месячной заработной платы определите среднюю заработную плату (используя способ моментов), приходящуюся на одного работника, моду и медиану.

Группы работников по величине месячной заработной платы, долл. Число рабочих, в процентах к итогу
500-600 10
600-700 15
700-800 20
800-900 25
900-1000 15
1000-1100 10
Более 1100 5
Итого: 100

Если Вы нашли, что искали, но решили набрать эту задачку самостоятельно, хочу немного облегчить Вам работу.

Ниже выкладываю «голый» текст задачи. Останется добавить формулы и графики.

По следующим данным о распределении 100 работников банка по величине месячной заработной платы определите среднюю заработную плату (используя способ моментов), приходящуюся на одного работника, моду и медиану.

Группы работников по величине месячной заработной платы, долл.

Число рабочих, в процентах к итогу

Расчеты представьте в табличной форме. Сделайте выводы.

Последний интервал с открытой верхней границей. Величину этого интервала принято брать равной величине интервала, перед ним.

Расчет средней по способу моментов основан на средней арифметической.

В качестве условного нуля выбирают середину одного из интервалов, обладающего наибольшей частотой. Этот способ используется только в рядах с равными интервалами.

I = 100 – величина интервала

A = 850 – середина интервала с наибольшей частотой.

m1 — момент первого порядка,

m2 — момент второго порядка.

Среднее квадратическое отклонение свидетельствует о том, что рассматриваемая величина в среднем отклоняется от средней величины на 18,97.

Вычислим моду и медиану:

Мода – наиболее часто встречающееся значение признака в совокупности.

Для интервального ряда распределения, сразу можно указать только интервал, где будут находиться мода и медиана.

Для определения их величины используют формулы:

Медианным называется интервал, которому соответствует значение накопленной частоты большей полусуммы всех частот.

Источник

Читайте также:  Настоящий способ как получить гемы
Оцените статью
Разные способы