Определение угла наклона прямой способом прямоугольного треугольника

Способ прямоугольного треугольника

Способ прямоугольного треугольника является одним из тех методов в котором находится действительная величина отрезка или расстояние между двумя точками прямой по двум проекциям. В отличие от отрезков прямых частного положения, проецирующихся хотя бы на одну из плоскостей проекций в натуральную величину, отрезок прямой общего положения на плоскости проекций проецируется с искажением. Для того чтобы найти его натуральную величину, необходимо провести ряд преобразований.

Возьмем прямую общего положения АВ и спроецируем ее на горизонтальную плоскость проекций . Через точку А проведем линию, параллельную плоскости . Таким образом в пространстве получим прямоугольный треугольник , один из катетов которого (AB1) равен длине проекции отрезка, а угол между отрезком и этим катетом является углом наклона заданного отрезка к плоскости проекций.

Для определения натуральной величины отрезка прямой общего положения и углов наклона ее к плоскости проекций на КЧ необходимо построить прямоугольный треугольник: — первый катет этого треугольника равен проекции отрезка на плоскости проекций (обычно прямоугольный треугольник пристраивают к проекции отрезка, однако в некоторых задачах целесообразно прямоугольный треугольник строить в стороне от проекций геометрических объектов); — из проекции любого конца отрезка под прямым углом к проекции отрезка проводится луч, на котором откладывается длина второго катета, равная разности расстояний от концов отрезка до данной плоскости проекций; — гипотенуза полученного таким образом прямоугольного треугольника равна действительной величине заданного отрезка.

Ортогональная проекция отрезка общего положения всегда будет меньше его действительной величины.

Для графического определения на эпюре Монжа действительной величины отрезка или расстояния между двумя точками прямой может быть использован способ прямоугольного треугольника. Где выполняется построение прямоугольного треугольника: — за один его катет принимается горизонтальная (фронтальная, профильная) проекция отрезка; — а за другой катет — разность удаления концов отрезка от горизонтальной (или соответственно фронтальной, профильной) плоскости проекции; — гипотенуза, полученного таким образом, прямоугольного треугольника равна действительной величине заданного отрезка или расстояния между двумя точками прямой.

Графическое определение действительной величины отрезка [AB] или расстояния между двумя точками прямой A и B путем построения прямоугольных треугольников ΔA`B`B0 или ΔA»B»A0.

Используя способ прямоугольного треугольника, можно также решать задачу по построению на эпюре: — проекции отрезка, наперед заданной величины; — проекции расстояния между двумя точками прямой, наперед заданной величины.

Даны проекции равностороннего треугольника ABC(A`B`C`,A»B». ) .
Построить недостающие проекции треугольника.

Построение равностороннего треугольника выполняется с использованием способа прямоугольного треугольника

Другие графические способы определение действительной величины, натурального вида или натуральной величины отрезка, плоской фигуры изложены в статье: Метод преобразования. Определение действительной величины треугольника ΔABC показаны на примере решения двух задач в статье: Графическая работа 3

Способ прямоугольного треугольника применяется в статье графическая работа 1: Графическая работа 1

Если вы искали не Способ прямоугольного треугольника а: Проекции треугольника, нажмите на ссылку.

Построение треугольника в плоскости общего положения смотри: Вращение вокруг следа

Источник

Углы наклона прямой

Углы наклона прямой общего положения по двум ее проекциям находятся попутно при определении действительной величины отрезка способом прямоугольного треугольника. В отличие от отрезков прямых частного положения, проецирующихся хотя бы на одну из плоскостей проекций в натуральную величину, отрезок прямой общего положения на плоскости проекций проецируется с искажением. Для того чтобы найти его натуральную величину, необходимо провести ряд преобразований.

Читайте также:  Методы обучения это способы организации учебно познавательной деятельности

Возьмем прямую общего положения АВ и спроецируем ее на горизонтальную плоскость проекций . Через точку А проведем линию, параллельную плоскости . Таким образом в пространстве получим прямоугольный треугольник , один из катетов которого (AB1) равен длине проекции отрезка, а угол между отрезком и этим катетом является углом наклона заданного отрезка к плоскости проекций (рис.).

Для определения натуральной величины отрезка прямой общего положения и угла наклона ее к плоскости проекций на эпюре (КЧ) необходимо построить прямоугольный треугольник: — первый катет этого треугольника равен проекции отрезка на плоскости проекций (обычно прямоугольный треугольник пристраивают к проекции отрезка, однако в некоторых задачах целесообразно прямоугольный треугольник строить в стороне от проекций геометрических объектов); — из проекции любого конца отрезка под прямым углом к проекции отрезка проводится луч, на котором откладывается длина второго катета, равная разности расстояний от концов отрезка до данной плоскости проекций; — гипотенуза полученного таким образом прямоугольного треугольника равна действительной величине заданного отрезка; — угол наклона отрезка к той или иной плоскости проекций равен углу между гипотенузой – натуральной величиной и катетом – проекцией на эту плоскость проекций.

Углы наклона прямой, отрезка общего положения всегда будут меньше их ортогональных проекций.

Для графического определения на эпюре Монжа действительной величины отрезка достаточно построить прямоугольный треугольник, взяв за один его катет горизонтальную (фронтальную, профильную) проекцию отрезка, а за другой катет — разность удаления концов отрезка от горизонтальной (или соответственно фронтальной, профильной) плоскости проекции.

Графическое определение действительной величины отрезка [AB] путем построения прямоугольных треугольников ΔA`B`B0 или ΔA»B»A0 и попутно углов его наклона: — α к горизонтальной плоскости проекции; — β к фронтальной плоскости проекции.

Углы наклона прямой к плоскости проекций проецируется на эпюре без искажений, когда она занимает положение прямой уровня, это может быть: — Горизонтальная прямая; — Фронтальная прямая; — Профильная прямая

Углы наклона прямой применяются в статье графическая работа 1: Графическая работа 1

Определение углов наклона плоскости смотри также: Линия наибольшего наклона

Источник

Научная электронная библиотека

Пиралова О. Ф., Ведякин Ф Ф.,

4.5. Определение длины отрезка и углов его наклона к плоскостям проекций

Прямая общего положения на плоскости проекций отображается с искажением (рис.4.6). Для того чтобы найти её натуральную величину, необходимо воспользоваться правилом прямоугольного треугольника, согласно которому на комплексном чертеже натуральной величиной прямой является гипотенуза прямоугольного треугольника, построенного на двух катетах. Один из этих двух катетов – это проекция рассматриваемой прямой, а вторым катетом является разность координат начала и конца этой прямой или разность координат z точек А и В (Δz = zA – zB).

Углы наклона прямой общего положения к плоскостям проекций по двум ее проекциям находят при определении действительной величины этой прямой способом прямоугольного треугольника. Если взять прямую общего положения АВ и спроецировать ее на горизонтальную плоскость проекций, а через точку А провести линию, параллельную плоскости, то в пространстве получится прямоугольный треугольник, один из катетов которого (AB’) равен длине проекции прямой АВ, а угол между прямой и этим катетом будет углом наклона заданной прямой к горизонтальной плоскости проекций (рис. 4.6), что можно подтвердить известным математическим соотношением:

Читайте также:  Самый легкий способ выучить пдд

tg α = BB’ / AB’ = (BB1 – B’B1) / AB’ = (zB – zA) / A1 B1.

Прямая А1В0 представляет натуральную величину прямой общего положения АВ.

Для определения натуральной величины прямой общего положения АВ и угла наклона её к плоскости проекций на эпюре (комплексном чертеже) необходимо построить прямоугольный треугольник:

— первый катет этого треугольника равен проекции прямой, на плоскости проекций;

— для построения второго катета необходимо из проекции любого конца проекции прямой линии под прямым углом к проекции провести луч, на котором отложить длину второго катета, равную разности расстояний от концов прямой до данной плоскости проекций;

— гипотенуза полученного прямоугольного треугольника будет равна действительной величине заданной прямой;

— угол наклона прямой линии к той или иной плоскости проекций равен углу между гипотенузой – натуральной величиной и катетом – проекцией прямой на эту плоскость проекций.

Углы наклона прямой линии общего положения к плоскости, всегда меньше их ортогональных проекций.

Рис. 4.6. Определение угла наклона и натуральной величины отрезка

Учитывая сказанное выше и рассмотрев рис. 4.7, можно утверждать, что длина отрезка АВ равна гипотенузе треугольника, катетами которого являются фронтальная проекция отрезка А2В2 и разность координат Y точек А и В (ΔY = YB – YA). Угол этого треугольника, лежащий против катета ΔY, равен углу наклона отрезка АВ к фронтальной плоскости проекций π2 (угол β°).

По аналогии длина отрезка АВ может быть определена и как гипотенуза треугольника, катеты которого профильная проекция отрезка А3В3 и разность координат Х (Δ Х = ХА – ХВ) точек А и В. Угол γ° этого треугольника, лежащий против катета Δ Х, определяет угол наклона отрезка АВ к профильной плоскости проекций π3.

На рис. 4.8 показан пример определения натуральной (действительной) длины прямой АВ и углов её наклона к плоскостям проекций.

Рис. 4.7. Определение угла наклона и натуральной величины отрезка

Рис. 4.8. Определение длины отрезка и углов наклона к плоскостям проекций на комплексном чертеже

Угол αº, получен при построении прямоугольного треугольника на горизонтальной проекции прямой. Углы β и γ определены с использованием фронтальной и профильной проекций прямой соответственно. Натуральная величина, указанной прямой, обозначена гипотенузами прямоугольных треугольников, построенных на трёх плоскостях проекций.

Источник

Определение угла наклона прямой способом прямоугольного треугольника

Длину отрезка АВ и a — угол наклона отрезка к плоскости П 1 можно определить из прямоугольного треугольника АВС |A С | =|A 1 B 1 | , ||= D Z . Для этого на эпюре (рис.31) из точки B 1 под углом 90 0 проводим отрезок | B 1 B 1 * |= D Z , полученный в результате построений отрезок A 1 B 1 * и будет натуральной величиной отрезка АВ, а угол B 1 A 1 B 1 * = a . Рассмотренный метод называется методом прямоугольного треугольника . Тот же результат можно получить при вращении треугольника АВ С вокруг стороны A С до тех пор, пока он не станет параллелен плоскости П1, в этом случае треугольник проецируется на плоскость проекций без искажения. Подробнее вращение вокруг оси параллельной плоскости проекций рассмотрены в разделе «Методы преобразования ортогональных проекций».

Читайте также:  Конфликты виды способы поведения

Рисунок 31. Определение натуральной величины отрезка и угла его
наклона к горизонтальной плоскости проекций

а) модель б) эпюр

Длину отрезка АВ и b — угол наклона отрезка к плоскости П2 можно определить из прямоугольного треугольника АВС |A С |=|A 2 B2| , ||= D Y . П остроения аналогичные рассмотренным, только в треугольнике АВВ* сторона |B В* | = DU и треугольник совмещается с плоскостью П2 (рис.32).

Источник

Определение натуральной величины отрезка

Если отрезок параллелен плоскости, то он проецируется на неё без искажений. В остальных случаях для нахождения его натуральной величины применяют метод прямоугольного треугольника или способы преобразования ортогональных проекций.

Метод прямоугольного треугольника

Сущность данного метода заключается в нахождении гипотенузы прямоугольного треугольника, у которого один катет равен горизонтальной (или фронтальной) проекции отрезка, а величина другого катета представляет собой разность удаления концов отрезка от горизонтальной (или, соответственно, фронтальной) плоскости проекции.

Для того чтобы найти натуральную величину отрезка AB (рисунок выше), строим прямоугольный треугольник A0A’B’. Его первый катет A’B’ – это горизонтальная проекция AB. Второй катет A’A0 равен величине ZA – ZB, то есть разности удаления точек A и B от горизонтальной плоскости П1.

Откладываем A’A0 = ZA – ZB перпендикулярно A’B’. Затем проводим гипотенузу A0B’ треугольника A0A’B’. На рисунке она обозначена красным цветом. Её величина соответствует настоящей длине AB.

Способ параллельного переноса

Параллельный перенос представляет собой перемещение геометрической фигуры параллельно одной из плоскостей проекций. При этом величина проекции фигуры на эту плоскость не меняется. Например, если перемещать отрезок EF параллельно горизонтальной плоскости П1, то длина его проекции E’F’ не изменится, когда она займет новое положение E’1F’1 (как это показано на рисунке ниже).

Еще одно важное свойство параллельного переноса заключается в том, что при любом перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. Если точка перемещается параллельно фронтальной плоскости, то её горизонтальная проекция движется по прямой, параллельной оси X.

Чтобы определить действительный размер отрезка EF, на свободном месте чертежа строим его новую горизонтальную проекцию E’1F’1 = E’F’ так, чтобы она была параллельна оси X . Затем по линиям связи находим точки E»1 и F»1. Расстояние между ними и есть искомая величина, поскольку мы перенесли EF в положение, параллельное фронтальной плоскости.

Метод параллельного переноса, описанный здесь, иногда называют параллельным перемещением. Посмотреть дополнительные примеры и получить более подробную информацию по данной теме можно в этой статье.

Поворот вокруг оси

Для того, чтобы отрезок стал параллелен плоскости проекции и без искажения отразился на ней, он может быть повернут вокруг проецирующей прямой, проходящей через один из его концов.

Определим длину произвольного отрезка MN. Для этого через точку N проводим горизонтально проецирующую прямую i. Вокруг неё поворачиваем MN так, чтобы его проекция M’N’ заняла положение M’1N’1, параллельное оси X.

По линиям связи находим точку M»1. При этом исходим из того, что M» в процессе вращения движется параллельно горизонтальной плоскости.

Точка N не изменит своего положения, так как лежит на оси поворота. Поэтому осталось только соединить N»1 и M»1 искомым отрезком. На рисунке он выделен красным цветом.

Более подробную информацию о решении задач методом поворота вокруг оси вы можете получить, ознакомившись со следующим материалом.

Источник

Оцените статью
Разные способы