- Определение гранулометрического состава мокрым способом
- Классификация механических элементов почвы
- Классификация почв по гранулометрическому составу
- Определение гранулометрического состава мокрым способом
- 1. МЕТОДЫ ОТБОРА ПРОБ
- 2. АППАРАТУРА, ПОСУДА И РЕАКТИВЫ
- 3. МЕТОД МОКРОГО РАССЕВА
- 4. МЕТОД СУХОГО РАССЕВА
Определение гранулометрического состава мокрым способом
Гранулометрический состав почвы — фундаментальное свойство почвы, т.е. от него зависят многие другие почвенные свойства (физические, химические, биологические, физико-химические и др.).
Твердая фаза почв формируются при выветривании горных пород. Она представлена частицами (обломками) первичных и вторичных минералов, органического вещества (гумуса) и органо-минеральных соединений
Все эти частицы называются механическими элементами
В почве они находятся в раздельно-частичном состоянии, либо в виде агрегатов разной величины и формы. Размеры механических элементов различаются, что связано с особенностями почвообразовательных процессов
Частицы разного размера определяют и особые свойства почвы. Эти свойства меняются довольно отчетливо, а, иногда, и резко, что послужило основанием для разделения их на группы или фракции.Такая группировка называется КЛАССИФИКАЦИЕЙ МЕХАНИЧЕСКИХ ЭЛЕМЕНТОВ
В России наибольшее распространение и признание получила классификация Н.А. Качинского. Эта классификация играет такое же большое значение, как периодическая система Менделеева в химии. Можно, даже сказать, что суть их в принципе одинакова.
Рассмотрим несколько клаасификаций механических элементов по размерам:
Первая классификациядостаточно простая –
частицы размером более 1 мм: СКЕЛЕТ почвы
частицы размером менее 1 мм: МЕЛКОЗЕМ
Вторая классификациянаиболее важная, на ее основе почвы классифицируются по гранулометрическому составу –
частицы размером более 0,01 мм называют: ФИЗИЧЕСКИЙ ПЕСОК
частицы размером менее 0,01 мм: ФИЗИЧЕСКАЯ ГЛИНА
Все главнейшие свойства почв особенно резко изменяются на переходе размера частиц через 0,01 мм.
Третья классификация – Н.А. Качинского:
Классификация механических элементов почвы
Название фракций механических элементов | Размер фракций, мм | Группы фракций | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Камни | > 3 | СКЕЛЕТ | |||||||||||||||||
Гравий | 3-1 | СКЕЛЕТ | |||||||||||||||||
Песок крупный | 1-0,5 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Песок средний | 0,5-0,25 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Песок мелкий | 0,25-0,05 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Пыль крупная | 0,05-0,01 | ФИЗИЧЕСКИЙ ПЕСОК | |||||||||||||||||
Пыль средняя | 0,01-0,005 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Пыль мелкая | 0,005-0,001 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Ил грубый | 0,001-0,0005 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
Ил тонкий | 0,0005-0,0001 | ФИЗИЧЕСКАЯ ГЛИНА | |||||||||||||||||
КОЛЛОИДЫ | ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ ПОЧВЫ это относительное содержание в почве частиц разного размера или, по-другому, процентное соотношение между физическим песком и физической глиной Далее в таблице представлена классификация почв по гранулометрическому составу (Н.А. Качинский) Классификация почв по гранулометрическому составу
Чем больше физической глины в твердой фазе почв, тем тяжелее их обрабатывать, поэтому в агрономии различают тяжелые и легкие почвы. Песчаные и супесчаные почвы легко поддаются обработке, поэтому издавна их называют легкими, характеризуются хорошей водопроницаемостью и благоприятным воздушным режимом, быстро прогреваются, но также быстро остывают и имеют низкую влагоемкость. Поэтому на песчаных и супесчаных почвах даже во влажных районах растения страдают от недостатка влаги. Легкие почвы бедны гумусом и элементами питания растений, обладают незначительной поглотительной способностью, подвергаются ветровой эрозии. Физико-механические свойства, например, пластичность, липкость, набухаемость, сопротивление при обработке на легких почвах отличаются от тяжелых, а от этого зависят сроки проведения полевых работ, нормы выработка, расход горючего и т.д. Суглинистые и глинистые почвы отличаются более высокой связностью и влагоемкостью, хорошо обеспечены питательными веществами и гумусом по сравнению с песчаными почвами. Запасы влаги и питательных веществ в этих почвах способны обеспечить хорошие урожаи сельскохозяйственных культур, особенно на тяжелосуглинистых и глинистых почвах, которые обладают выраженной структурой и содержат достаточное количество водопрочных агрегатов. Однако, обработка этих почв требует больших энергетических затрат, поэтому их принято называть тяжелыми. Тяжелые почвы подвергаются водной эрозии в большой степени, нежели ветровой. При нерациональном использовании эти почвы могут терять свою структуру. Тяжелые бесструктурные почвы обладают характерными свойствами глинистых частиц, с чем связаны неблагоприятные физические и физико-механические свойства. В зависимости от влажности глина резко меняет свои свойства: она тверда в сухом состоянии, при избытке воды – текуча, а при умеренном содержании воды – пластична. В связи с этим бесструктурные глинистые почвы имеют слабую водопроницаемость, легко заплывают, образуют корку, отличаются большой плотностью, липкостью, вязкостью, часто неблагоприятным воздушным и тепловым режимами. Различают несколько методов гранулометрического анализа почвы: полевые и лабораторные (ситовый анализ, гранулометрический анализ почвы в воде). «Сухой» метод легко используется в полевых условиях. Зерно почвы, величиною с зерно гречихи, испытывают на ощупь между пальцами. Раздавливают ногтем на ладони и втирают в кожу. Чем зерно более угловато, жестко, прочно и чем большая часть его после полного раздавливания втирается в кожу, тем почва тяжелее по гранулометрическому составу. «Мокрый» метод используется как в поле, так и в лаборатории. Почву смачивают и разминают между пальцами до такого состояния, чтобы не ощущались ее структурные зерна, до консистенции теста. Хорошо размятая почва раскатывается на ладони «ребром» второй кисти руки в шнур и сворачивается в колечко. Толщина шнура около 3 мм, диаметр кольца — около 3 см. (таблица) Источник Определение гранулометрического состава мокрым способомМетоды определения гранулометрического состава Ion-exchange resins. ОКСТУ 2209, 2227 Дата введения 1985-07-01 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР В.Н.Степанов, А.С.Злобина, Н.А.Петрова 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 13.09.84 N 3212 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ Обозначение НТД, на который дана ссылка Номер раздела, пункта 5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4-94) 6. ПЕРЕИЗДАНИЕ (январь 1999 г.) с Изменением N 1, утвержденным в марте 1989 г. (ИУС 6-89) Настоящий стандарт распространяется на полимеризационные и поликонденсационные иониты и устанавливает методы определения гранулометрического состава мокрым и сухим рассевом. 1. МЕТОДЫ ОТБОРА ПРОБ1.1. Методы отбора проб ионитов указывают в нормативно-технической документации на конкретную продукцию. Для определения гранулометрического состава от объединенной пробы отбирают (200±10) г ионита методом квартования. 2. АППАРАТУРА, ПОСУДА И РЕАКТИВЫПрибор для определения зернового состава 029 или 028М вращательно-встряхивающего действия, число оборотов эксцентрикового вала 300 об/мин, число ударов рычага 180 мин . Набор сит с проволочными сетками N 0315К, 04К; 05К; 063К; 08К; 1К; 1,25К; 1,6К и 2К по ГОСТ 6613 и N 1,4 и 1,8 по ГОСТ 3826 диаметром обечаек 200 мм. Чашки ЧКЦ-1-5000 по ГОСТ 25336 или из полимеризационного материала, достаточные для помещения в них сита. Цилиндры исполнений 1-2, вместимостью 5 и 10 см и исполнений 1-4, вместимостью 25, 50 и 100 см по ГОСТ 1770. Стаканчики для взвешивания (бюксы) по ГОСТ 25336. Стаканы типа В или Н в любом исполнении, вместимостью 50, 100, 500 и 1000 см по ГОСТ 25336 или фарфоровые стаканы по ГОСТ 9147. Трубка стеклянная диаметром (8±1) мм. Весы ВЛК-500 с ценой деления 0,02 г по ГОСТ 24104* или другие с аналогичными метрологическими характеристиками. * На территории Российской Федерации действует ГОСТ 24104-2001. — Примечание «КОДЕКС». Натрий хлористый по ГОСТ 4233, х.ч., насыщенный раствор. Натрий сернокислый по ГОСТ 195, х.ч., насыщенный раствор. Вода дистиллированная по ГОСТ 6709 или деминерализованная, соответствующая требованиям ГОСТ 6709. Фенолфталеин (индикатор), 1%-ный спиртовой раствор; готовят по ГОСТ 4919.1. Метиловый оранжевый (индикатор), 0,1%-ный раствор; готовят по ГОСТ 4919.1. (Измененная редакция, Изм. N 1). 3. МЕТОД МОКРОГО РАССЕВА3.1. Подготовка к испытанию 3.1.1. Перед испытанием определяют массовую долю влаги ионита по ГОСТ 10898.1. 3.1.2. Около (200±10) г ионита с массовой долей влаги более 30% помещают в стакан вместимостью 500 см , заливают дистиллированной или деминерализованной водой и оставляют на 1 ч для набухания. Вода должна с избытком покрывать слой ионита с учетом его набухаемости. 3.1.3. Около (200±10) г ионита с массовой долей влаги менее 30% помещают в стакан вместимостью 1000 см , заливают насыщенным раствором хлористого натрия и оставляют на 5 ч для набухания. Раствор хлористого натрия должен с избытком покрывать слой ионита с учетом его набухаемости. Затем ионит промывают дистиллированной или деминерализованной водой до отсутствия в фильтрате кислотности по метиловому оранжевому или щелочности по фенолфталеину. При изменении ионной формы ионита после набухания в насыщенном растворе хлористого натрия его переводят в товарную форму по ГОСТ 10896. (Измененная редакция, Изм. N 1). 3.1.4. Аниониты с массовой долей влаги менее 30%, выпускаемые в SO -форме, выдерживают в насыщенном растворе сернокислого натрия в течение 5 ч. 3.2. Проведение испытания 3.2.1. Рассев ионита при определении коэффициента однородности и эффективного размера зерен ведется на комплекте сит, верхний и нижний размер ячеек которых соответствует нижнему и верхнему пределу гранулометрического состава. 3.2.1.1. Из стакана переносят набухший ионит стеклянной трубкой в цилиндр вместимостью 100 см . Стеклянную трубку каждый раз опускают до дна стакана. Для поликонденсационных ионитов с зернами неправильной формы допускается перенос ионита полиэтиленовым шпателем. Ионит уплотняют постукиванием о деревянную поверхность дна цилиндра до прекращения усадки, после этого доводят объем ионита до 100 см . (Измененная редакция, Изм. N 1). 3.2.1.2. Сито размером ячеек, соответствующим верхнему пределу гранулометрического состава, помещают в емкость для рассева. Ионит из цилиндра струей дистиллированной или деминерализованной воды переносят на сито, заполняют емкость водой и встряхивают сито. При этом частицы ионита должны находиться в движении, а уровень воды не должен подниматься до края сита. 3.2.1.3. Через 4 мин измеряют объем фракции, оставшейся на сите, если объем составляет более 20 см , проводят повторное встряхивание в чистой емкости в течение 3 мин. Зерна ионита, прошедшие через сито, соединяют вместе. Зерна ионита, оставшиеся на сите, переносят струей воды в стакан, а застрявшие в ячейках сетки щеткой выталкивают в чистую емкость. Затем их помещают в стакан к фракции ионита, оставшейся на сите. Ионит из стакана переносят в цилиндр, уплотняют его постукиванием дна цилиндра о деревянную поверхность до прекращения усадки и измеряют объем уплотненного ионита. 3.2.1.4. На сито размером ячеек, соответствующим следующему пределу гранулометрического состава, переносят зерна ионита, прошедшие через предыдущее сито. Рассев и измерение объема фракции ионита, оставшейся на сите, проводят аналогично предыдущей фракции. Эту операцию повторяют со всеми ситами и в конце измеряют объем фракции ионита, прошедшей через сито с наименьшим размером ячеек. 3.2.2. Рассев ионита при определении содержания рабочей фракции проводят на двух ситах, соответствующих верхнему и нижнему пределам гранулометрического состава. Время рассева ионита на верхнем сите 4 мин. Зерна ионита, прошедшие через сито, переносят на сито, соответствующее нижнему пределу гранулометрического состава. Рассев на нижнем сите проводят до тех пор, пока гранулы не перестанут проходить через ячейки. Зерна ионита, оставшиеся на сите и застрявшие в его ячейках, соединяют вместе и измеряют их объем в цилиндре вместимостью 100 см . Измеренный объем соответствует объемной доле рабочей фракции в процентах. (Измененная редакция, Изм. N 1). 4. МЕТОД СУХОГО РАССЕВА4.1. Подготовка к испытанию Ионит помещают в плоскую коробку слоем не более 0,5 см и подсушивают на воздухе до состояния, когда зерна ионита легко отделяются друг от друга. Каждое сито набора сит и поддон взвешивают с погрешностью не более 0,1 г. 4.2. Проведение испытания 4.2.1. Рассев ионита при определении коэффициента однородности и эффективного размера зерен проводят механическим или ручным способом на наборе сит, верхний и нижний размер которых соответствует нижнему и верхнему пределам гранулометрического состава. 4.2.2. 100 г воздушно-сухого ионита, взвешенного с погрешностью не более 0,1 г помещают на верхнее сито набора сит размером ячеек, соответствующим верхнему пределу гранулометрического состава. Набор сит закрывают крышкой и закрепляют его при механическом рассеве в аппарате для встряхивания, который затем приводят в движение, а при ручном рассеве набор сит приводят во вращательное движение периодическими резкими ударами ладонью руки по обечайке и крышке. 4.2.3. По истечении 10 мин верхнее сито отделяют и проверяют полноту высевания фракции над листом бумаги и производят первое взвешивание. Рассев заканчивают, если остаток на сите уменьшается не более чем на 0,2%, в течение 2 мин. Затем проверяют полноту рассева на других ситах набора. Если полнота рассева недостаточная, то рассев проводят еще в течение 5 мин. 4.2.4. Рассеянные фракции ионита переносят с сита в стаканчик и взвешивают с погрешностью не более 0,1 г. Допускается проводить взвешивание ионита вместе с соответствующим ситом, при этом массу рассеянной фракции определяют как разность между массой сита с фракцией и без нее. Суммарная масса всех фракций не должна отличаться от исходной массы навески ионита более чем на 2%. 4.2.5. Рассев ионита при определении содержания рабочей фракции проводят, как указано в пп.3.2.2 и 4.2.3. Источник |