Определение абсолютной скорости любой точки тела мгновенный центр скоростей способы его определения

Б) Метод определения мгновенного центра скоростей

Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров.

Задача сводится к определению положения мгновенного центра вращений (скоростей) (рис. 12.4).

Рис.12.4. Метод определения мгновенного центра скоростей

Мгновенным центром скоростей (МЦС) является точка на плоскости, абсолютная скорость которой в дан­ный момент равна нулю.

Вокруг этой точки тело совершает поворот со скоростью ω

Скорость точки А в данный мо­мент равна

т.к. vA — линейная скорость точки А, вращающейся вокруг МЦС.

Существуют три способа определения положения мгновенного центра скоростей.

Первый способ.Известна скорость одной точки тела vA иугло­вая скорость вращения тела ω (рис. 12.5).

Точку О находим на перпендикуляре к вектору скорости vA

Соединяем точку О с точкой Д замеряем расстояние ОБ,

Второй способ.Известны скорости двух точек тела vA и v В и они не параллельны

Проводим из точек А и В два перпендикуляра к известным век­торам скоростей.

На пересечении перпендикуляров находим МЦС. Далее можно

найти скорость любой точки С.

Третий способ.Известны скорости двух точек тела, и они па­раллельны (vA || v В)

Соединяем концы векторов, МЦС находится на пересечении ли­нии, соединяющей концы векторов с линией АВ (рис. 12.7). При по­ступательном движении тела (рис. 12.7в) МЦС отсутствует.

Занятие 13. (2 часа) Основные понятия и аксиомы динамики. Понятия о трении.

Содержание и задачи динамики

Динамика — раздел теоретической механики, в котором уста­навливается связь между движением тел и действующими на них силами.

В динамике решают два типа задач:

— определяют параметры движения по заданным силам;

— определяют силы, действующие на тело, по заданным кине­матическим параметрам движения.

При поступательном движении все точки тела движутся одина­ково, поэтому тело можно принять за материальную точку.

Если размеры тела малы по сравнению с траекторией, его то­же можно рассматривать как материальную точку, при этом точка совпадает с центром тяжести тела.

При вращательном движении тела точки могут двигаться не­одинаково, в этом случае некоторые положения динамики можно применять только к отдельным точкам, а материальный объект рас­сматривать как совокупность материальных точек.

Поэтому динамику делят на динамику точки и динамику мате­риальной системы.

Аксиомы динамики

Законы динамики обобщают результаты многочисленных опы­тов и наблюдений. Законы динамики, которые принято рассматри­вать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были известны Галилею. Механику, основанную на этих законах, называют классической механикой.

Читайте также:  Каким способом будет приобретен товаров

Источник

iSopromat.ru

Рассмотрим формулы и примеры определения положения мгновенного центра скоростей (МЦС) для различных твердых тел и механизмов при плоскопараллельном движении.

Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра.

В соответствии с этим легко доказывается, что при плоскопараллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нулю.

Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV.

При определении положения МЦС скорость любой точки может быть записана: VM = VCv + VMCv , где точка CV выбрана за полюс. Поскольку это МЦС и VCv=0, то скорость любой точки определяется как скорость при вращении вокруг мгновенного центра скоростей:

Из рисунка 2.16 видно, что МЦС лежит в точке пересечения перпендикуляров, проведённых к скоростям точек, при этом всегда справедливо соотношение:

На рисунке 2.17 показаны примеры определения положения МЦС детали кривошипно-шатунного механизма и приведены формулы для расчета скоростей точек.

На рисунках 2.18 — 2.21 приведены примеры определения положения МЦС.

В этом случае МЦС находится в «бесконечности», т.е.

  1. VA/2R=V0/R=VM/(R√2)=ω,
  2. VA/2R=V0/R=VB/(R+r)=ω,
  3. VA/(R+r)=V0/r=VN/(R-r)=ω

Формулы справедливы при отсутствии проскальзывания в точке CV.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Решение задач, контрольных и РГР

Стоимость мы сообщим в течение 5 минут
на указанный вами адрес электронной почты.

Если стоимость устроит вы сможете оформить заказ.

Набор студента для учёбы

— Рамки A4 для учебных работ
— Миллиметровки разного цвета
— Шрифты чертежные ГОСТ
— Листы в клетку и в линейку

Источник

Мгновенный центр скоростей (МЦС) и его определение. Определение скоростей точек тела с помощью МЦС

Мгновенным центром скоростей (МЦС) называется такая точка плоской фигуры, скорость которой в данный момент времени равна нулю.

При любом непоступательном движении плоской фигуры такая точка всегда существует. Действительно,

Пусть в данный момент времени известно положение МЦС фигуры. Тогда, принимая его за полюс и учитывая, что , получим по формуле (4) для произвольной точки фигуры

Читайте также:  Способы утепления кирпичного дома изнутри

т.е. знание МЦС упрощает определение скоростей точек плоской фигуры, т.к. сразу позволяет определить модуль скорости по формуле (5) и направление: .

Таким образом, при известном МЦС вектор скорости любой точки плоской фигуры равен

модуль определяется по формуле

направлен вектор к отрезку РМ, соединяющему МЦС с данной точкой М, в сторону вращения фигуры вокруг МЦС.

В силу вышесказанного, возникает важная задача об определении положения МЦС плоской фигуры.

Положение мгновенного центра скоростей плоской фигуры может быть найдено, если:

1) задан закон движения (1) плоской фигуры (МЦС определяется с помощью дифференциальных равенств);

2) известны направления скоростей двух точек плоской фигуры, или их траектории.

Рассмотрим только случай 2). Пусть известны направления скоростей двух точек А и В фигуры. Тогда для нахождения МЦС надо из этих точек опустить перпендикуляры к направлениям скоростей. В точке пересечения этих перпендикуляров и будет МЦС.

Частные случаи определения МЦС.

а) скорости точек параллельны, но точки не лежат на общем перпендикуляре к скоростям

Ясно, что в этом случае перпендикуляры к скоростям параллельны, пересекаются в ¥, угловая скорость фигуры = 0 и скорости всех её точек в данный момент равны между собой. Такое движение фигуры называют мгновенно поступательным.

Замечание. Не путать мгновенно поступательное движение с поступательным: при поступательном движении скорости и ускорения всех точек равны между собой в любой момент времени, а при мгновенно поступательном равны только скорости всех точек (но не ускорения – они не равны друг другу!) и только в данный момент.

б) скорости двух точек фигуры параллельны, направлены в одну сторону и их модули не равны друг другу, а точки лежат на одном перпендикуляре к скоростям

В этом случае одних направлений скоростей не достаточно: должны быть известны и их модули.

Для нахождения МЦС надо концы векторов скоростей соединить прямой линией: в точке её пересечения с продолжением отрезка АВ и будет МЦС.

Если известно расстояние АВ, то легко получить

в) то же, что и в предыдущем случае, но векторы скоростей направлены в разные стороны; в этом случае модули скоростей могут быть и равны между собой, но должны быть известны.

Нахождение МЦС также аналогично предыдущему: концы векторов скоростей соединяем прямой линией – в точке её пересечения с отрезком АВ будет МЦС.

Если задано расстояние АВ, то аналогично пункту б) можно найти

г) качение колеса без скольжения по любой гладкой неподвижной поверхности.

Читайте также:  Способ применения калгона для стиральной машинки

Если колесо всё время остаётся в вертикальной плоскости, и отсутствуют повороты вокруг вертикальной оси, то оно совершает плоскопараллельное движение. В этом случае положение МЦС сразу известно: в точке контакта колеса с поверхностью. Действительно, если нет скольжения, то скорость точки контакта равна скорости соответствующей точки поверхности, т.е. нулю (поверхность неподвижна). По определению МЦС – здесь он и находится.

В связи с этим, интересно посмотреть распределение скоростей точек катящегося без скольжения колеса:

скорость верхней точки колеса в два раза больше скорости его центра!

Примеры определения МЦС для шатуна АВ кривошипно-ползунного механизма.

Определение МЦС для шатуна АВ кривошипно-коромыслового механизма:

Рассмотрим пример определения скорости и ускорения точки плоской фигуры.

Прямоугольная пластина со сторонами a = 0,4 м и b = 0,3 м движется в своей плоскости. В данный момент времени скорость точки А пластины равна по модулю vA = 4 м/с, модуль ускорения этой точки равен aA = 3 м/с 2 , модули угловой скорости и углового ускорения фигуры равны соответственно , . Направления показаны на рисунке.

Определить скорость и ускорение точки B плоской фигуры в этот момент времени.

РЕШЕНИЕ. Принимая за полюс точку А, для определения скорости точки B используем формулу (4):

Вычислив расстояние АВ

по формуле (5) найдём модуль скорости точки В при её вращении вокруг полюса А

Изображаем вектор ():

(стрелка вектора должна быть направлена в сторону вращения фигуры!).

Вектор скорости полюса переносим параллельно в точку В,

согласно равенству (4) складываем векторы и .

Для определения модуля скорости находим :

Теперь модуль скорости можно найти двумя способами:

по теореме косинусов (формула (6))

При определении скорости вторым способом выбираем оси координат

и проектируем (4) на эти оси:

Ускорение точки В определяем по формуле (8)

принимая за полюс точку А с известным ускорением.

По формулам (10) и (12) находим модули ускорений

Изображаем векторы этих ускорений:

.

Так как согласно (8) для определения вектора ускорения точки В надо складывать три вектора, то выбираем оси координат

и проектируем (8) на эти оси:

Модуль ускорения будет

Геометрически (на рисунке) вектор ускорения строится при помощи «векторного многоугольника»: от заданной точки в выбранном масштабе последовательно откладываются векторы так, что конец предыдущего вектора является началом следующего; сумма векторов – вектор, идущий из заданной точки в конец последнего вектора.

Зная скорость точки А и угловую скорость фигуры можно найти положение мгновенного центра скоростей. Из равенства (15) следует

Используя доказательство существования МЦС, получаем.

Источник

Оцените статью
Разные способы