Биология. 10 класс
Конспект урока
Биология, 10 класс
Урок 6. «Обмен веществ: фотосинтез и биологическое окисление (Гликолиз и цикл Кребса)»
3. Перечень вопросов, рассматриваемых в теме;
Урок посвящен изучению процессов обмена веществ в клетке и его роли в синтезе веществ и обеспечении энергией для процессов жизнедеятельности.
4. Глоссарий по теме (перечень терминов и понятий, введенных на данном уроке);
Автотрофы, анаэробный гликолиз, ассимиляция, аэробный гликолиз, биологическое окисление, гетеротрофы, диссимиляция, окислительное фосфорилирование, пласический обмен, световая и темновая фазы фотосинтеза, строма хлоропластов, тилакоиды гран, фотолиз воды, фотосинтез, цикл Кребса, энергетический обмен.
- Автотрофы – организмы, синтезирующие органические вещества из неорганических.
- анаэробный гликолиз— сложный ферментативный процесс последовательных превращений глюкозы, протекающий в тканях человека и животных без потребления кислорода.
- аэробный гликолиз — процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода
- биологическое окисление— это совокупность окислительно-восстановительных превращений веществ в живых организмах
- гетеротрофы — организмы, использующие для питания готовые органические вещества.
- окислительное фосфорилирование— метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ
- пластический обмен или ассимиляция– биологический синтез сложных веществ из более простых. При этом все реакции идут с использованием энергии.
- Энергетический обмен или диссимиляция– ферментативное расщепление (гидролиз, окисление) сложных органических соединений на простые. Все эти реакции идут с выделением энергии в виде АТФ.
- фотолиз воды — расщепление молекулы воды, в частности в процессе фотосинтеза, при этом образуется кислород, выделяющийся зелеными растениями на свету.
- фотосинтез – процесс превращения зелеными растениями и фотосинтезирующими микроорганизмами неорганических веществ (воды и углекислого газа) в органические за счет солнечной энергии.
5. Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц);
- Учебник «Биология.10-11класс», созданный под редакцией академика Д.К. Беляева и профессора Г.М. Дымшица / авт.-сост. Г.М. Дымшиц и О.В. Саблина. — М.: Просвещение, 2018г., стр.44-54 ,Базовый уровень.
1.Общая биология 10-11, дидактические материалы/ авт.-сост. С.С. Красновидова, С. А. Павлов, А. Б. Павлов, — М. Просвещение, 2000г., стр.6-42
2. Общая биология 10-11 классы: подготовка к ЕГЭ. Контрольные и самостоятельные работы/ Г. И. Лернер. – М.: Эксмо, 2007.стр 46-53
3. Биология: общая биология. 10-11 классы: учебник/ А. А. Каменский, Е. А. Криксунов, В. В. Пасечник.- М.: Дрофа, 2018. Стр.81-95
4. А. Ю. Ионцева, А. В. Торгалов «Биология в схемах и таблицах». .
5. Е. Н. Демьянков, А. Н. Соболев «Сборник задач и упражнений. Биология 10-11», учебное пособие для общеобразовательных организаций.
6. открытые электронные ресурсы по теме урока (при наличии);
- Образовательный портал для подготовки к экзаменам https://bio-ege.sdamgia.ru/?redir=1
- Российский общеобразовательный Портал http://www.school.edu.ru/
7. Теоретический материал для самостоятельного изучения;
Каждая живая клетка – это сложная, высокоупорядоченная система. Эксперименты показали, что содержимое клетки находится в состоянии непрерывной активности. Различные вещества поступают в клетку, а наружу из нее выходят продукты жизнедеятельности, то есть происходит обмен веществ — основа существования живых организмов.
Таким образом, обмен веществ или метаболизм – это совокупность реакций биосинтеза и расщепления веществ в клетке.
Метаболизм = Анаболизм + Катаболизм
или (ассимиляция) (диссимиляция)
или (пластический обмен) (энергетический обмен)
Пластический обмен – биологический синтез сложных веществ из более простых. При этом все реакции идут с использованием энергии. В результате интенсивно происходит рост организма. Это процессы фотосинтеза и синтеза белка.
Энергетический обмен – ферментативное расщепление (гидролиз, окисление) сложных органических соединений на простые. Все эти реакции идут с выделением энергии в виде АТФ. (энергия используется на поддержание жизненных процессов, работу организма)
Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно?
Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и развития растения получают все необходимые вещества из окружающей среды: углекислый газ — из воздуха, воду и питательные вещества — из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и кислород. Это и есть фотосинтез
В процессе фотосинтеза солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О.
Растения «придумали», как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.
Фотосинтез. Световая и темновая фазы фотосинтеза.
Существуют две фазы фотосинтеза (описание и таблица — далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и темновая фазы фотосинтеза сменяют друг друга по мере наступления дня и ночи (циклы Кальвина).
Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.
1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию
2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез
3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода
4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза
1. Реакции внесветового цикла протекают в строме хлоропластов
2. Углекислый газ и энергия от АТФ используются в виде глюкозы
Заключение Из всего вышесказанного можно сделать следующие выводы: Фотосинтез — это процесс, который позволяет получать энергию от солнца. Световая энергия солнца преобразуется в химическую энергию хлорофиллом. Хлорофилл придает растениям зеленый цвет. Фотосинтез происходит в хлоропластах клеток листьев растений. Углекислый газ и вода необходимы для фотосинтеза. Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород. Вода впитывается в растение через его корни. Без фотосинтеза в мире не было бы еды.
История развития знаний о биологическом окислении Процесс, который лежит в основе получения энергии, сегодня вполне известен. Это биологическое окисление.
Виды биологического окисления. Можно выделить два основных типа рассматриваемого процесса, которые протекают при разных условиях. Так, самый распространенный у многих видов микроорганизмов и грибков способ преобразования получаемой пищи − анаэробный. Это биологическое окисление, которое осуществляется без доступа кислорода и без его участия в какой-либо форме. Подобные условия создаются там, куда нет доступа воздуху: под землей, в гниющих субстратах, илах, глинах, болотах и даже в космосе. Этот вид окисления имеет и другое название − гликолиз. Он же является одной из стадий более сложного и трудоемкого, но энергетически богатого процесса − аэробного преобразования или тканевого дыхания. Это уже второй тип рассматриваемого процесса. Он происходит во всех аэробных живых существах-гетеротрофах, которые для дыхания используют кислород. Таким образом, виды биологического окисления следующие. Гликолиз, анаэробный путь. Не требует присутствия кислорода и заканчивается разными формами брожения. Тканевое дыхание (окислительное фосфорилирование), или аэробный вид. Требует обязательного наличия молекулярного кислорода. биологическое окисление биохимия
Все биохимические процессы живых организмов чрезвычайно многогранны и сложны. Окислительно-восстановительные реакции, примеры которых могут проиллюстрировать описанные выше процессы окисления субстрата, следующие. Гликолиз: моносахарид (глюкоза) + 2НАД+ + 2АДФ = 2ПВК + 2АТФ + 4Н+ + 2Н2О + НАДН. Окисление пирувата: ПВК + фермент = диоксид углерода + ацетальдегид. Затем следующий этап: ацетальдегид + Кофермент А = ацетил-КоА. Множество последовательных преобразований лимонной кислоты в цикле Кребса. Данные окислительно-восстановительные реакции, примеры которых приведены выше, отражают суть происходящих процессов лишь в общем виде. Известно, что соединения, о которых идет речь, относятся к высокомолекулярным, либо имеющим большой углеродный скелет, поэтому изобразить все полными формулами просто не представляется возможным.
Энергетический выход тканевого дыхания: По приведенным выше описаниям очевидно, что подсчитать суммарный выход всего окисления по энергии несложно. Две молекулы АТФ дает гликолиз. Окисление пирувата 12 молекул АТФ. 22 молекулы приходится на цикл трикарбоновых кислот. Итог: полное биологическое окисление по аэробному пути дает выход энергии, равный 36 молекулам АТФ. Значение биологического окисления очевидно. Именно эта энергия используется живыми организмами для жизни и функционирования, а также для согревания своего тела, движения и прочих необходимых вещей. ферменты биологического окисления.
Молочнокислое брожение осуществляется молочнокислыми бактериями, а также некоторыми грибками. Суть состоит в восстановлении ПВК до молочной кислоты. Этот процесс используют в промышленности для получения: кисломолочных продуктов; квашеных овощей и фруктов; силоса для животных. Этот вид брожения является одним из самых применяемых в нуждах человека. Спиртовое брожение известно людям с самой древности. Суть процесса заключается в превращении ПВК в две молекулы этанола и две диоксида углерода. Благодаря такому выходу продукта, данный вид брожения используют для получения: хлеба; вина; пива; кондитерских изделий и прочего. Осуществляют его грибы дрожжи и микроорганизмы бактериальной природы. биологическое окисление и горение Маслянокислое брожение — достаточно узкоспецифичный вид брожения. Осуществляется бактериями рода Клостридиум. Суть состоит в превращении пирувата в масляную кислоту, придающую продуктам питания неприятный запах и прогорклый вкус. Поэтому реакции биологического окисления, идущие по такому пути, практически не используют в промышленности.
8. примеры и разбор решения заданий тренировочного модуля (не менее 2 заданий).
Вставьте пропущенные слова, выбирая из списка правильные ответы:
… (А) – создание на свету из углекислого газа и воды органических веществ, используя … (Б), при это в атмосферу выделяется кислород. Фотосинтез протекает в … (В). Световая фаза протекает на мембранах … (Г). Темновая фаза фотосинтеза протекает в … (Д) хлоропластов.
Тип вариантов ответов: (Текстовые, Графические, Комбинированные):
Источник
Окисление органических веществ это способ получения энергии
Видео YouTube
СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Она образуется в результате реакции фосфорилирования – присоединения остатков фосфорной кислоты к молекуле АДФ. На эту реакцию расходуется энергия, которая затем накапливается в макроэргических связях молекулы АТФ, при распаде молекулы АТФ или при ее гидролизе до АДФ клетка получает около 40 кДж энергии.
АТФ – постоянный источник энергии для клетки, она мобильно может доставлять химическую энергию в любую часть клетки. Когда клетке необходима энергия – достаточно гидролизовать молекулу АТФ. Энергия выделяется в результате реакции диссимиляции (расщепления органических веществ), в зависимости от специфики организма и условий его обитания энергетический обмен проходит в два или три этапа. Большинство живых организмов относятся к аэробам, использующим для обмена веществ кислород, который поступает из окружающей среды. Для аэробов энергетический обмен проходит в три этапа:
В организмах, которые обитают в бескислородной среде и не нуждаются в кислороде для энергетического обмена – анаэробах и аэробах, при недостатке кислорода проходят энергетический обмен в два этапа:
Количество энергии, которое выделяется при двухэтапном варианте намного меньше, чем в трехэтапном.
ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Подготовительный этап – во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами, у одноклеточных – ферментами лизосом. Полисахариды распадаются на ди- и моносахариды, белки – до аминокислот, жиры – до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется. Образующиеся в ходе подготовительного этапа соединения-мономеры могут участвовать в реакциях пластического обмена (в дальнейшем из них синтезируются вещества, необходимые для клетки) или подвергаться дальнейшему расщеплению с целью получения энергии.
Большинство клеток в первую очередь используют углеводы, жиры остаются в первом резерве и используются по окончания запаса углеводов. Хотя есть и исключения: в клетках скелетных мышц при наличии жирных кислот и глюкозы предпочтение отдается жирным кислотам. Белки расходуются в последнюю очередь, когда запас углеводов и жиров будет исчерпан – при длительном голодании.
Бескислородный этап (гликолиз) – происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Ее бескислородное расщепление называют анаэробным гликолизом. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам. Этот этап заключается в ферментативном расщеплении органических веществ, полученных в ходе первого этапа. Так как глюкоза является наиболее доступным субстратом для клетки как продукт расщепления полисахаридов, то второй этап можно рассмотреть на примере ее бескислородного расщепления – гликолиза (Рис. 1).
Рис. 1. Бескислородный этап
Гликолиз – многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей шесть атомов углерода, до двух молекул пировиноградной кислоты (пируват). Реакция гликолиза катализируется многими ферментами и протекает в цитоплазме клетки. В ходе гликолиза при расщеплении одного моля глюкозы выделяется около 200 кДж энергии, 60 % ее рассеивается в виде тепла, 40 % – для синтезирования двух молекул АТФ из двух молекул АДФ. При наличии кислорода в среде пировиноградная кислота из цитоплазмы переходит в митохондрии и участвует в третьем этапе энергетического обмена. Если кислорода в клетке нет, то пировиноградная кислота преобразуется в животных клетках или превращается в молочную кислоту.
В микроорганизмах, которые существуют без доступа кислорода – получают энергию в процессе брожения, начальный этап аналогичен гликолизу: распад глюкозы до двух молекул пировиноградной кислоты, и далее она зависит от ферментов, которые находятся в клетке – пировиноградная кислота может преобразовываться в спирт, уксусную кислоту, пропионовую и молочную кислоту. В отличие от того, что происходит в животных тканях, у микроорганизмов этот процесс носит название молочнокислого брожения. Все продукты брожения широко используются в практической деятельности человека: это вино, квас, пиво, спирт, кисломолочные продукты. При брожении, так же как и при гликолизе, выделяется всего две молекулы АТФ.
Кислородный этап стал возможен после накопления в атмосфере достаточного количества молекулярного кислорода, он происходит в митохондриях клеток. Он очень сложен по сравнению с гликолизом, это процесс многостадийный и идет при участии большого количества ферментов. В результате третьего этапа энергетического обмена из двух молекул пировиноградной кислоты формируется углекислый газ, вода и 36 молекул АТФ (Рис. 2).
Рис. 2. Митохондрия
Две молекулы АТФ запасаются в ходе бескислородного расщепления молекулами глюкозы, поэтому суммарный энергетический обмен в клетке в случае распада глюкозы можно представить как:
С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ
В результате окисления одной молекулы глюкозы шестью молекулами кислорода образуется шесть молекул углекислого газа и выделяется тридцать восемь молекул АТФ.
Мы видим, что в трехэтапном варианте энергетического обмена выделяется гораздо больше энергии, чем в двухэтапном варианте – 38 молекул АТФ против 2.
В отсутствие кислорода или при его недостатке про исходит брожение. Брожение является эволюционно бо лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу ются на восстановление пирувата:
Для многих микроорганизмов брожение является единственным способом ассимиля ции энергии. Большинство таких организмов живет в анаэробных условиях и погибает в присутствии кислорода, но есть и такие, которые нормально существуют и в присутствии кислорода, и без него. Например, дрожжевые грибы при спиртовом брожении окисляют пировиноградную кислоту до этилового спирта и оксида углерода (IV):
Источник