Нуклеоид бактерий способ выявления

Нуклеоид

Нуклеоид – ядро клетки или генетический материал прокариот. В нем сосредоточен основной объем генетической информации бактериальной клетки (бактерии) [2] [1] .

Факт присутствия в нуклеоиде ДНК впервые был доказан Ж. Кейрнсом при помощи метода радиоавтографии бактерии кишечной палочки (Escherichia coli). Радиоавтографы развернутой молекулы бактериальной ДНК данного вида доказывают, что для бактерий Escherichia coli ДНК имеет форму нити, замкнутой в кольцо. Эта молекула (хромосома) включает в семя несколько тысяч генов, расположенных линейно [2] .

Внешний вид нуклеоида

Полностью «уложенный» нуклеоид представляет собой компактное образование. В зависимости от метода микроскоприрования и фиксации нуклеоид может выглядеть различным образом:

  1. При фиксировании парами осмия и применении световой микроскопии нуклеоид имеет вид боковидного тела с хорошо очерченными контурами. Он занимает центральную часть клетки и у бактерий кишечной группы имеет длину около 1 мкм [2] .
  2. В клетке живой бактерии в фазово-контрастном микроскопе нуклеоид так же имеет вид овального тельца светлого на фоне темной цитоплазмы[2] .
  3. При микроскопировании ультратонких срезов бактерий в электронном микроскопе нуклеоид похож на клубок мотков толстой веревки, состоящей из множества нитей [2] .
  4. При микроскопировании утратонких срезов замороженных бактерий, нуклеоид просматривается в виде кораллоподобной структуры с плотной сердцевиной и тонкими рожками-выступами. Эти выступы, как ветви, пронизывают цитоплазму, образуя нечто вроде ореола вокруг сердцевины [2] .

Нуклеоид является дифференцированной структурой. В зависимости от стадии развития бактериальной клетки он может быть прерывистым (дискретным) и состоять из отдельных фрагментов. Такую форму нуклеоид обычно принимает в связи с тем, что деление бактериальной клетки наблюдается после завершения репликации молекулы ДНК и формирования дочерних хромосом [1] .

Установлено, что бактериальные клетки большинства видов бактерий содержат только одну хромосому (большинство бактерий – гаплоидны). Однако часто в интенсивно растущей культуре количество ДНК на клетку достигает массы равной трем, четырем, восьми и более хромосом. Из этого следует вывод, что термины «нуклеоид» и «хромосома» не всегда являются идентичными и в зависимости от условий, нуклеоид бактериальной клетки может состоять из одной или нескольких копий одной и той же хромосомы [1] .

Структура нуклеоида

Нуклеоид прокариот представлен одной замкнутой в кольцо двухспиральной нитью ДНК длиной 1,1–1,6 мм, которую рассматривают в качестве одиночной бактериальной хромосомы или генофора. Эта нить уложена в компактную структуру, локализованную в ограниченных участках цитоплазмы [2] [1] .

Нуклеоид бактерий отличается от ядра эукариотических клеток отсутствием ядерной мембраны, ядрышка и митотического способа деления и находится в непосредственном контакте с цитоплазмой клетки [3] .

В состав структур нуклеоида входят РНК-полимераза, основные белки. Хромосома закреплена на цитоплазматической мембране, а у грамположительных бактерий на мезосоме [1] .

Источник

Таблица микробиология(строение бактерии)

Особенности строения бактериальной клетки.

Ригидные свойства клеточным стенкам придаёт пептидогликан.

У грамположительных бактерий наружный слой клеточной стенки содержит липопротеиды, гликопротеиды, тейхоевые кислоты, у них отсутствует липополисахаридный слой.

Многослойный пептидогликан (муреин, мукопептид) 40-90 % массы. Глицерофасфат, рибитолофосфат, липотейховые , тейовые и тейхуриновые кислоты, полисахариды , липиды , белки.

S- слой содержащий гликопротеиновые и протеиновые молекулы .

У грамотрицательных бактерий наружный пластический слой четко выражен, содержит липопротеиды, ипополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида (О-антигена). Внутренний слой наружной мембраны представлен фосфолипидами

Клеточная стенка имеет два слоя:

1) наружный – пластичный;

2) внутренний – ригидный

Пептидогликан представлен параллельно расположенными молекулами гликана, состоящего из повторяющихся остатков N-ацетилглюкозомина и N- ацетилмурамовой кислоты, соединённой гликозидной связью . Эти связи разрывает лизоцим.

Клеточная стенка- ригидное защитное образование, обеспечивающие взаимодействие с факторами окружающей среды 1) защитную, осуществление фагоцитоза;

2) регуляцию осмотического давления;

4) принимает участие в процессах питания деления клетки;

Читайте также:  Способы повышения профессионального роста

5) антигенную (определяется продукцией эндотоксина– основного соматического антигена бактерий);

6) стабилизирует форму и размер бактерий;

7) обеспечивает систему коммуникаций с внешней средой;

8) косвенно участвует в регуляции роста и деления клетки.

Клеточная стенка при обычных способах окраски не видна, но если клетку поместить в гипертонический раствор (при опыте плазмолиза), то она становится видимой.

При окраске по Грамму многослойный пептидогликан удерживает комплекс красителей в виде генциафиолетового и йода : при кратковременной обработке спиртом бактерии остаются окрашенными в сине-фиолетовый цвет . Наоборот грамотрицательные бактерии обесвечиваются спиртом ,поэтому последующая обработка мазка водным фуксином или сафарином окрашивает бактерии в красный цвет.

Имеет обычное строение: два слоя фосфолипидов (25–40 %) , поверхностные и интегральные белки.

По структуре она похожа на плазмолемму клеток животных и состоит из двойного слоя липидов , главным образом фосфолипидов , с внедрёнными поверхностными , а так же интегральными белками, как бы пронизывающими насквозь структуру мембраны.

Она обладает избирательной проницаемостью, принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки, является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.

При электронном микрокопировании ультратонких срезов представляет собой трехслойную мембрану( 2 темных слоя по 2,5 нм разделены светлым –промежуточным.

Растворимые белки , рибонуклеиновые кислоты , включения и многочисленные мелкие гранул –рибосом, ответственных за синтез белков. Гликоген, полисахариды , бетаоксимаслянная кислота, полифосфаты(волютин), вода 50-60%.

Имеет жидкую структуру в которой находится её компоненты представленные различными включениями в виде гранул гликогена , полисахаридов и полифосфатов.

1)объединение всех компонентов клетки в единую среду

2)среда для прохождения химических реакций

3)среда для существования и функционирования органоидов.

Легко выявляется с помощью выявляется с помощью специальных методов окраски (например по Нейссеру) в виде метахроматических гранул.

Метод окраски по Нейссеру

Двунитевая ДНК замкнутая в кольцо

Нуклеоид- эквивалент ядра у бактерий . Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной в клубок.

Участвует в делении клетки , а так же хранит и передаёт наследственную информацию.

Нуклеоид выявляется в световом микроскопе после окраски специфическими для ДНК методами по Фельгену или Романовскому-Гимзе.

Метод окраски по Фельгену или Романовскому –Гимзе.

Ковалентно замкнутые кольца ДНК.

Внехромосомные факторы наследственности –представляющие собой ковалентно замкнутые кольца ДНК., расположенные в цитоплазме или интегрированные с хромомсомой.

Устойчивость к антибиотикам (R плазмиды) , способность к передаче наследственного материала при конъюгации(F плазмиды) , продукция бактериоцинов, в частности колицинов , подавляющих рост других бактерий (Col плазмиды).

Выявляется с помощью специальных методов окраски.

Метод Фельгена . Подготовка реактива Шифа . Получаем окраску в красный цвет.

рибонуклеиновые кислоты (РНК) 16S pPHK (входящую в состав малой субъединицы) и 23SрРНК (входящую в состав большой субъедин. Белок.

Рибосомы бактерий имеют размер около 20нм и коэфицент седиментации 70S.Могут диссоциировать на 2 субъединицы 50S и 30S.

На рибосомах происходит синтез белка и полипептидных молекул..

Микроскопическое исследование с помощью электронного микроскопа.

Капсула, микрокапсула, слизь.

Слизь: мукойдные полисахариды не имеющие четких внешних границ.

Капсула- слизистая структура толщиной более 0,2 мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула гидрофильна , включает большое количество воды.

Капсула и слизь предохраняет бактерии от повреждений , высыхания , так как , являясь гидрофильными хорошо связывают воду , препятствуют действию защитных факторов макроорганизмов гликокаликсом.

Капсула выявляется при специальных методах окраски мазка по Бурри-Гинсу. Создающих негативное контрастирование веществ капсулы: тушь создаёт тёмный фон вокруг капсулы.

Метод окраски по Бурри-Гинсу.

Белок Флаггелин являющимся антигеном – так называемый H -антиген.

Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок – флагелин. Количество и расположение жгутиков может быть различным. Толщина 12-20нм, длина 3-15мкм.Состоят из трёх частей, спиралевидной нити , крюка и базального тельца , содержащего стержень со специальными дисками. Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке.

Читайте также:  Принятие наследства способы принятия наследства сроки принятия наследства

Обеспечение подвижности бактериальной клетки. Механизм вращения обеспечивает протонная АТФ-синтетаза. Скорость вращения жгутика может достигать 100 об/сек.

Жгутики выявляются с помощью электронной микроскопии препаратов, напыленных тяжелыми металлами , или в световом микроскопе после обработки специальными методами, основанными на протравливании и адсорбции различных веществ, приводящих к увеличению толщины жгутиков. Например , после серебрения .

Метод окраски по Леффлеру. Различные оттенки от жёлтого до тёмно-коричневого. Препарат висячей капли. Электронограмма бактерии, напыление металлом.

Ворсинки или Пили

Нитевидные образования , более тонкие и короткие чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина , обладающего антигенной активностью. Различают пили , ответственные за прикрепление, питание , водосолевой обмен и половые. Несколько сотен пили на клетку.

Различают пили , ответственные за прикрепление, питание , водосолевой обмен и половые пили. Многие пили являются рецепторами для бактериофагов.

Фазово-контрастная микроскопия препаратов.

По методу Морозова.

Дипилоколинат кальция (оболочка),липопротеины, кератиноподобные белки, 3глицеринфосфат (энергия вместо АТФ)

Форма спор может быть овальной , шаровидной, расположение –терминальное , субтерминальное и центральное. Снаружи спора имеет тонкий экзоспориум, под которым расположена оболочка споры ,а под ней кортекс, состоящий из пептидогликана .Внутри кортекса находится клеточная стенка спор.

Споры образуются при неблагоприятных условиях, УФ-облучение, дефицит питательных веществ. Защитная функция.

Для обнаружения используют специальные методы окраски.

Споры кислотоустойчивы по этому окрашиваются по методу Ауески или по методу Циля-Нельсена в красный, а вегетативная клетка в синий цвет.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Нуклеоид бактерий: функции и методы выявления

Что такое нуклеоид

Нуклеоид бактерий — это область в их клетках, содержащая структурированный генетический материал. В отличие от ядра эукариот она не отделена мембраной от остального клеточного содержимого и не имеет постоянной формы. Несмотря на это генетический аппарат бактерий четко отграничен от цитоплазмы.

Сам термин означает «подобный ядру» или «ядерная область». Впервые эту структуру обнаружил в 1890 г. зоолог Отто Бючли, но ее отличия от генетического аппарата эукариот были выявлены аж в начале 1950-х годов благодаря технологии электронной микроскопии. Название «нуклеоид» соответствует понятию «бактериальная хромосома», если последняя содержится в клетке в единственном экземпляре.

Нуклеоид не включает в себя плазмиды, которые являются внехромосомными элементами бактериального генома.

Особенности нуклеоида бактерий

Обычно нуклеоид занимает центральный участок бактериальной клетки и ориентирован вдоль ее оси. Объем этого компактного образования не превышает 0,5 мкм3, а молекулярная масса варьирует от 1×109 до 3×109 дальтон. В определенных точках нуклеоид связан с клеточной мембраной.

В состав нуклеоида бактерий входят три компонента:

  • ДНК.
  • Структурные и регуляторные белки.
  • РНК.

ДНК имеет хромосомную организацию, отличную от эукариотической. Чаще всего нуклеоид бактерий содержит одну хромосому или несколько ее копий (при активном росте их количество достигает 8 и более). Этот показатель варьирует в зависимости от вида и стадии жизненного цикла микроорганизма. Некоторые бактерии имеют несколько хромосом с разным набором генов.

В центре нуклеоида ДНК укомплектована достаточно плотно. Эта зона недоступна для рибосом, ферментов репликации и транскрипции. Напротив, дезоксирибонуклеиновые петли периферической области нуклеоида напрямую контактируют с цитоплазмой и представляют собой активные участки бактериального генома.

Количество белкового компонента в нуклеоиде бактерий не превышает 10 %, что примерно в 5 раз меньше, чем в хроматине эукариот. Большая часть белков ассоциирована с ДНК и участвует в ее структурировании. РНК представляет собой продукт транскрипции бактериальных генов, которая осуществляется на периферии нуклеоида.

Генетический аппарат бактерий является динамическим образованием, способным менять свою форму и структурную конформацию. В нем отсутствуют характерные для ядра эукариотической клетки ядрышки и митотический аппарат.

Бактериальная хромосома

В большинстве случаев хромосомы нуклеоида бактерий имеют замкнутую кольцевую форму. Значительно реже встречаются линейные хромосомы. В любом случае эти структуры состоят из одной молекулы ДНК, которая содержит набор генов, необходимых для выживания бактерии.

Читайте также:  Какое определение соответствует понятию метод обучения способ организации

Хромосомная ДНК укомплектована в виде суперспирализованных петель. Количество петель на хромосому варьирует от 12 до 80. Каждая хромосома является полноценным репликоном, так как при удвоении ДНК копируется целиком. Начинается этот процесс всегда из точки начала репликации (OriC), которая прикреплена к плазматической мембране.

Суммарная длина молекулы ДНК в хромосоме на несколько порядков превышает размеры бактерии, поэтому возникает необходимость в ее упаковке, но при сохранении функциональной активности.

В хроматине эукариот эти задачи выполняют основные белки — гистоны. Нуклеоид бактерий имеет в своем составе ДНК-связывающие белки, которые отвечают за структурную организацию генетического материала, а также влияют на экспрессию генов и репликацию ДНК.

К нуклеоид-ассоциированым белкам относятся:

  • гистоноподобные белки HU, H-NS, FIS и IHF;
  • топоизомеразы;
  • белки семейства SMC.

Последние 2 группы оказывают наибольшее влияние на суперспирализацию генетического материала.

Нейтрализация отрицательных зарядов хромосомной ДНК осуществляется за счет полиаминов и ионов магния.

Биологическая роль нуклеоида

В первую очередь нуклеоид необходим бактериям для того, чтобы хранить и передавать наследственную информацию, а также реализовывать ее на уровне клеточного синтеза. Иными словами, биологическая роль этого образования такая же, как у ДНК.

Другие функции нуклеоида бактерий включают:

  • локализацию и компактизацию генетического материала;
  • функциональную упаковку ДНК;
  • регуляцию метаболизма.

Структурирование ДНК не только позволяет молекуле уместиться в микроскопической клетке, но и создает условия для нормального протекания процессов репликации и транскрипции.

Особенности молекулярной организации нуклеоида создают условия для контроля клеточного метаболизма путем изменения конформации ДНК. Регуляция происходит за счет выпетливания определенных участков хромосомы в цитоплазму, что делает их доступными для ферментов транскрипции, или наоборот, втягивания внутрь.

Способы обнаружения

Существует 3 способа визуального обнаружения нуклеоида в бактериях:

  • световая микроскопия;
  • фазово-контрастная микроскопия;
  • электронная микроскопия.

В зависимости от способа подготовки препарата и метода исследования нуклеоид может выглядеть по разному.

Световая микроскопия

Для выявления нуклеоида при помощи светового микроскопа бактерии предварительно окрашивают таким образом, чтобы нуклеоид имел цвет, отличный от остального клеточного содержимого, — иначе эта структура не будет видна. Также обязательна фиксация бактерий на предметном стекле (при этом микроорганизмы погибают).

Через объектив светового микроскопа нуклеоид выглядит как бобовидное образование с четкими границами, которое занимает центральную часть клетки.

Методы окраски

В большинстве случаев для визуализации нуклеоида методом световой микроскопии используют следующие способы окраски бактерий:

  • по Романовскому-Гимзе;
  • метод Фельгена.

При окрашивании по Романовскому-Гимзе бактерии предварительно фиксируются на предметном стекле метиловым спиртом, а затем в течение 10-20 минут пропитываются красителем из равной смеси азура, эонина и метиленового синего, растворенных в метаноле. В результате нуклеоид становится фиолетовым, а цитоплазма — бледно-розовой. Перед микроскопией краска сливается, а препарат промывается дистиллятом и высушивается.

В методе Фельгена применяется слабо кислотный гидролиз. В результате освобожденная дезоксирибоза переходит в альдегидную форму и взаимодействует с фуксинсернистой кислотой реактива Шиффа. В итоге нуклеоид становится красным, а цитоплазма приобретает синий цвет.

Фазово-контрастная микроскопия

Фазово-контрастная микроскопия имеет большее разрешение, чем световая. Этот метод не требует фиксации и окраски препарата, — наблюдение происходит за живыми бактериями. Нуклеоид в таких клетках выглядит как светлая овальная область на фоне темной цитоплазмы. Более эффективным метод можно сделать, применив флюоресцентные красители.

Выявление нуклеоида при помощи электронного микроскопа

Существует 2 способа подготовки препарата для исследования нуклеоида под электронным микроскопом:

  • ультратонкий срез;
  • срез замороженной бактерии.

На электронных микрофотографиях ультратонкого среза бактерии нуклеоид имеет вид состоящей из тонких нитей плотной сетчатой структуры, которая выглядит светлее окружающей цитоплазмы.

На срезе замороженной бактерии после иммуноокрашивания нуклеоид выглядит как кораллоподобная структура с плотной сердцевиной и тонкими проникающими в цитоплазму выступами.

На электронных фотографиях нуклеоид бактерий чаще всего занимает центральную часть клетки и имеет меньший объем, нежели в живой клетке. Это связано с воздействием химических реактивов, используемых для фиксации препарата.

Источник

Оцените статью
Разные способы