- Способы умножения
- Необычные способы умножения
- По-крестьянски
- Восточный способ
- Как работает умножение линиями?
- Жалюзи
- Какой метод умножения лучше?
- Нетрадиционный способ умножения натуральных чисел
- Темы исследований
- Оформление работы
- Наш баннер
- Исследовательские работы и проекты
- Нестандартные способы умножения
- Русский способ умножения
- Китайский способ умножения
- Итальянский способ умножения («Сеткой»)
- Индийский способ умножения
- Японский способ умножения
- Заключение
- Литература
- Приложение №1.Таблица умножения на пальцах
- Нетрадиционный способ умножения натуральных чисел
Способы умножения
Все знают, как умножать в столбик, немного меньше людей знают об умножении линиями, но есть и другие интересные способы.
Умножение чисел — это очень простая операция, фактически, то же самое, что и суммирование. Конечно, пока сами числа не большие.
2х3=2+2+2 (три раза по два) или 24х6=24+24+24+24+24+24 (шесть раз по 24)
То есть, знать таблицу умножения вовсе не обязательно? Да, но с ней удобнее. Например, в случае умножения чисел 235х4596, число 4596 придется сложить 235 раз! Или наоборот, 235 сложить 4596 раз…
Слово «сложить» употреблено не зря. Вот простой способ в этом убедится. Нужно взять листок бумаги сложить его 5 раз в одном направлении, а потом 3 раза в другом. Получится действие 5х3. Считаем получившиеся от сгибания прямоугольники — их 15. Это то же самое, если бы мы взяли 3 полоски ткани (или чего угодно) длинной 5 и сложили вместе.
Как ни крути, а получается — 15!
Необычные способы умножения
В школе нас учат использовать два инструмента: таблицу Пифагора (считается что таблицу умножения придумал именно этот греческий математик) и умножению «в столбик». Это действительно самые эффективные инструменты? Кроме них есть еще несколько интересных способов умножать числа. Может, какой-то из них будет проще и учить таблицу не придется?
По-крестьянски
Использовался для определения площади земельного участка. Например, имеем поле длинной 6 и шириной 5.
Чтобы узнать, сколько будет 6х5 делаем следующее: левое число делим на 2, а правое умножаем на 2, пока от левого числа не останется единица.
2/2= 1 | 10*2=20
4х5=20, все правильно, так же как и 1х20=20
Что происходит при таком способе? Мы разделяем прямоугольник пополам, пока его ширина не станет равняться единице. Делить на два не сложно.
Вот только что будет, если одна из сторон не будет делиться на 2? Будет долгий и не такой уж простой процесс.
6/2=3 | 2*2=4 → 12
3/2=1,5 | 4*2=8 → 12
1,5/2=0,75 | 8*2=16 → 12
Если в левой части четное число — эту строку не считаем, если значение меньше единицы — тоже отбрасываем, остается вторая и третья строка, а это 8+4=12. А если представить, что умножит нужно 173 на 735? Нет, такой способ умножения не самый легкий и простой.
Можно делить/умножать и на 3, но тогда нужно знать таблицу умножения «на три», тогда уж и 5 и 7 и… Да, удобнее выучить ее всю. Также, если будет необходимо перемножить большие числа, процесс будет очень длинным.
Восточный способ
То ли китайский, то ли японский способ умножения, при помощи линий, он же «графический». Его суть состоит в том, что цифры первого числа изображаются в виде параллельных линий, а второго — перпендикулярных им. Количество пересечений и является результатом умножения. То есть, здесь знать таблицу умножения не нужно, достаточно уметь суммировать. Например, так:
2 х 3 и даже 15 х 12
Японский или китайский метод, суть не меняется
Как работает умножение линиями?
Первое число (фиолетовым цветом на картинке) рисуется так: Снизу вверх, слева на право, сначала тысячи, потом сотни, десятки, единицы. Второе число (голубым цветом на картинке) рисуется наоборот: сверху-вниз.
В первом примере все просто 2 и 3. Две линии пересекают 3 другие, получается 6 точек. Во втором, сначала рисуем 15 — единицу (один десяток), потом пять линий изображающих 5 (пять единиц). Потом (12) перпендикулярно ей вторую единицу и 2 линии.
Далее нужно посчитать пересечения, но уже в обратном направлении. Начинать справа. В примере это 10, 7 и 1. Результат складывается в столбик:
Если сравнить с традиционным «столбиком», сперва может показаться, что японско-китайский метод проще…
А что делать, если нужно умножить 10 на 12? Как изобразить «ноль» линией? Никак, он участия не принимает, можно нарисовать его пунктиром и пересечение не считать, все просто…
Но вот уже случае 853х951 рисовать и считать точки придется очень много. Старый-добрый столбик опять окажется удобнее. Каждый сам может попробовать перемножить 9878 и 8794 «японским методом» и засечь необходимое время.
Японский метод с нулем
Эта методика не универсальна, совсем не подходит, когда числа достаточно большие, зато ее очень просто объяснить маленьким детям, которые еще не знают таблицу умножения.
Жалюзи
Встречается еще и название «решетки» и индийский метод умножения. Поверить в индийское происхождение проще всего, если вспомнить, кто вообще придумывал эту вашу математику в древности. Итак, чтобы умножить два числа, нужно построить матрицу (если угодно — таблицу, мы же пытаемся быть проще).
Умножаем 45 на 82
Так как в каждом числе по 2 цифры, таблица будет 2х2. Каждую ячейку нежно перечеркнуть по диагонали. Далее записываем слева-на-право, и сверху-вниз цифры 4, 5, 8, 2 напротив каждой ячейки. Начинаем умножать цифры находящиеся напротив друг-друга. 4 на 8, 5 на 8, 4 на 2 и 5 на 2.
Ну вот опять нужна таблица умножения, иначе придется долго складывать числа.
Результаты записываются в ячейки хитрым способом, десятки над диагональю, а единицы — под ней. Но, если значение меньше 10 (то есть это одна, а не две цифры), то вместо десятки верху пишется «ноль», как при умножении 4х5. Но можно оставить поле пустым.
Теперь, чтобы узнать результат, нужно посчитать сумму в каждой диагонали, как показано на картинке. Сверху-вниз:
3
0+2+4=6
8+1=9
0
В результате получаем 3690.
Тоже достаточно просто, только с небольшими значениями, для умножения трехзначных чисел придется рисовать таблицу размером 3х3=9 ячеек.
Какой метод умножения лучше?
Если перепробовать все способы умножения чисел, становится очевидно, что все представленные альтернативные методы умножения — это все варианты знакомого «столбика». Также операции разбиваются на более мелкие: сначала умножение, потом — суммирование.
Только в так называемом китайском/японском способе умножение как таковое не используется (вместо него пересечение линий) и в этом варианте действительно можно обойтись без таблицы умножения, но придется много рисовать, что повышает вероятность совершить ошибку при пересчете точек пересечения.
Есть мнение, что популярность умножения в столбик вызвана именно компактностью записи. Так на умножение требуется меньше бумаги, меньше чернил (да, чернила раньше использовались и тоже стоили денег) и соответственно времени.
Знать нетрадиционные методики интересно и даже полезно, но школьная таблица умножения, все же быстрее, а если вы знаете как умножать в столбик — это удобнее, чем любой другой способ. Если, конечно, не считать калькулятор.
Источник
Нетрадиционный способ умножения натуральных чисел
Темы исследований
Оформление работы
Наш баннер
Исследовательские работы и проекты
Нестандартные способы умножения
Русский способ умножения
Способ этот, был употребителен в обиходе русских крестьян и унаследован ими от глубокой древности. Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоении другого числа, таблица умножения в этом деле без надобности.
Для рисунка 2: 192 + 48 + 12 = 252
Правильность приёма станет ясна, если принять во внимание, что:
5 × 48 = (4 + 1) × 48 = 4 × 48 + 48
21 × 12 = (20 + 1) × 12 = 20 × 12 + 12
Ясно, что числа 48, 12, утрачиваемые при делении нечётного числа пополам, необходимо прибавить к результату последнего умножения, чтобы получить произведение. Русский способ умножения и элегантен и экстравагантен одновременно.
Китайский способ умножения
Предлагаем Вашему вниманию пример (в правом верхнем углу проверочный столбик).
Например: 12 × 321 = 3852
В первом множителе 1 десяток и 2 единицы, значит, строим одну зелёную прямую (1) и ей параллельно две оранжевые прямые (2).
Во втором множителе 3 сотни , 2 десятка и 1 единица. Строим параллельно три голубые (3) прямые , две красные(2) и поодаль одну синею. Прямые, пересекающие прямые первого множителя.
Теперь по рисунку прогуляемся, точки пересечения чисел-палочек на части разделим и приступим к подсчёту точек. Двигаемся справа налево (по часовой стрелке): 2, 5, 8, 3. Число-результат будем «собирать» слева направо (против часовой стрелки), получили 3852.
Итальянский способ умножения («Сеткой»)
В Италии, а также во многих странах Востока, этот способ приобрел большую известность.
Например: умножим 1234 на 576.
1. Вычерчиваем квадратную сетку и пишем одно из чисел над колонками, а второе по высоте.
2. Умножаем число каждого ряда последовательно на числа каждой колонки.
Т.е. 4х5 = 20. Записываем 2 и 0.
1х5*3 = 6. Если при умножении получается однозначное число, записываем
вверху 0, а внизу это число.
3. Заполняем всю сетку и складываем числа, следуя диагональным полосам. Начинаем складывать справа налево. Если сумма одной диагонали содержит десятки, то прибавляем их к единицам следующей диагонали.
Индийский способ умножения
Для умножения, например, 385 на 64 напишем одно число как множимое и под ним другое как множитель. Чтобы легче ориентироваться, можно использовать сетку как образец.
Теперь умножаем левую цифру множителя на каждую цифру множимого. Полученные произведения пишем в сетку.
Повторим весь процесс с другими цифрами множителя, следуя тем же правилам.
Японский способ умножения
Например: умножим 12 на 34. Так как второй множитель двузначное число, а первая цифра первого множителя 1, строим два одиночных круга в верхней строке и два двоичных круга в нижней строке, так как вторая цифра первого множителя равна 2.
Так как первая цифра второго множителя 3, а вторая 4, делим круги первого столбца на три части, второго столбца на четыре.
Количество частей, на которые разделились круги и является ответом, то есть 12 х 34 = 408.
Заключение
Как мы видим, быстрый счет это уже не тайна за семью печатями, а научно разработанная система. Раз есть система, значит ее можно изучать, ей можно следовать, ею можно овладеть.
Мы рассмотрели нестандартные способы умножения, деления и выявили, что современный используемый алгоритм умножения натуральных чисел — не единственный. Из представленных нами необычных способов умножения, более интересным показался китайский.
Мы познакомили с ним своих одноклассников, научили им пользоваться, и он им тоже очень понравился. Ведь не нужно обладать сверхъестественными способностями, чтобы уметь пользоваться разными способами умножения.
Используя некоторые из этих методов на уроках или дома, можно развить скорость вычислений, добиться успехов в изучении всех школьных предметов. Все рассмотренные нами методы вычислений говорят о многолетнем интересе и ученых, и простых людей к игре с цифрами.
Гипотеза подтвердилась: возрос интерес учащихся к математике, следовательно, они смогут использовать свои знания и умения в практической и повседневной жизни.
Таким образом, пока мы только изучали и анализировали уже известные способы умножения. Но кто знает, возможно, в будущем мы сами сможем открыть новые способы умножения.
Литература
- Гарднер М. Математические чудеса и тайны. — М., 1978.
- Глейзер Г.И. История математики в школе. — М.,1981.
- Депман И. «Рассказы о математике».– Ленинград.: Просвещение, 1954. – 140 с.
- Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи». – М.: Наука. Главная редакция физико-математической литературы, 1985. – 160 с.
- Перельман Я.И. Быстрый счет. Тридцать простых приемов устного счета. Л., 1941 — 12 с.
- Савин А.П. Математические миниатюры. Занимательная математика для детей. — М.: Детская литература, 1998, 175 с.
- Интернет – источники
Приложение №1.Таблица умножения на пальцах
Умножение на 9 с помощью пальцев
Умножение русским способом
Умножение китайским способом
Источник
Нетрадиционный способ умножения натуральных чисел
Однажды мама показала мне интересное видео, в котором один профессор показывал метод умножения двузначных чисел. Так как мы еще не умножаем двузначные числа, мне было интересно посмотреть, как это происходит. Тем более, что многие дети не учат таблицу умножения и поэтому возникают трудности в вычислениях.
Чтобы привлечь внимание учащихся к математике и ответить на вопрос «Надо ли знать таблицу умножения?» я выбрал тему «Необычные способы умножения».
Гипотеза: Надо ли знать таблицу умножения современному ученику?
В нашем современном мире постоянное применение вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты. Знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла
В разное время разные народы владели разными способами умножения натуральных чисел. Но в настоящее время все народы применяют один способ умножения «столбиком». У меня возникли вопросы:
Почему люди отказались от старых способов умножения в пользу современного? Имеют ли забытые способы умножения право на существование в наше время?
Цель работы: выявить наиболее удобный способ умножения.
Найти необычные способы умножения;
Научиться их применять;
Провести эксперимент и найти самый удобный и быстрый способ.
II . Необычные способы умножения
2.1. Немного истории
Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.
Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.
В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».
И все эти приемы умножения — «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.
Давайте рассмотрим наиболее интересные и простые способы умножения.
2.2. Умножение на пальцах.
Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.
Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.
Например, умножим 7 на 8. В рассмотренном примере будет загнуто 2 и 3 пальца. Если сложить количества загнутых пальцев (2+3=5) и перемножить количества не загнутых (2•3=6), то получатся соответственно числа десятков и единиц искомого произведения 56 . Так можно вычислять произведение любых однозначных чисел, больше 5.
2.3. Умножение на 9.
Умножение для числа 9 — 9·1, 9·2 . 9·10 — легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится «на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).
Допустим, хотим умножить 9 на 6. Загибаем палец с номером, равным числу, на которое мы будем умножать девятку. В нашем примере нужно загнуть палец с номером 6. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа — количество единиц. Слева у нас 5 пальцев не загнуто, справа — 4 пальца. Таким образом, 9·6=54. Ниже на рисунке детально показан весь принцип «вычисления».
По ходу дела скажем, что в качестве «счетной машинки» не обязательно могут выступать пальцы рук. Возьмите, к примеру, 10 клеточек в тетради. Зачеркиваем 8-ю клеточку. Слева осталось 7 клеточек, справа — 2 клеточки. Значит 9·8=72. Все очень просто.
7 клеток 2 клетки.
2.4. Умножение чисел методом «ревность» или «решетка».
Данный способ носит романтическое название «ревность», или «решётчатое умножение».
Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, — пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».
Умножим этим способом 347 на 29. Начертим таблицу, запишем над ней число 347, а справа число 29.
В каждую строчку запишем произведение цифр, стоящих над этой клеткой и справа от нее, при этом цифру десятков произведения напишем над косой чертой, а цифру единиц – под ней. Теперь складываем числа в каждой косой полосе, выполняя эту операцию, справа налево. Если сумма окажется меньше 10, то ее пишем под нижней цифрой полосы. Если же она окажется больше, чем 10, то пишем только цифру единиц суммы, а цифру десятков прибавляем к следующей сумме. В результате получаем искомое произведение 10063.
Источник