Нетрадиционные способы добычи нефти

Что такое нетрадиционная нефть?

Что такое нетрадиционная нефть?

В последнее время возрос интерес к нетрадиционным жидким углеводородам, о существовании которых знали давно, но вспомнили о них по мере истощения традиционных ресурсов. Ввиду относительной новизны данного явления и отсутствия чётких критериев отнесения жидких углеводородов к категории нетрадиционных, в мировой практике ещё не сформировалась единая классификация и существуют разночтения в данной области. И в профессиональной литературе, и в средствах массовой информации встречаются такие словосочетания, как сланцевая нефть, керогеновая нефть, нефтяные сланцы, нетрадиционная нефть, нефть низкопроницаемых пород и т.п.

На базе обзора литературы разработана классификация, учитывающая различные виды нефти. Остановимся подробнее на каждом из видов жидких углеводородов.

Итак, отличительной чертой традиционной нефти является тот факт, что жидкие углеводороды залегают в традиционных ловушках, добыча осуществляется с применением хорошо отработанных технологий и для дальнейшей транспортировки и продажи не требуется существенная подготовка сырья. К данной категории относятся как нефть наземных месторождениях, так и морских.

Природный газовый конденсат – жидкие или сжиженные газообразные углеводороды, выделенные из природного газа на установках сепарации или газоперерабатывающих заводах.

В данной классификации к нетрадиционной нефти относятся ресурсы, расположенные в сложных геологических условиях, требующие применения новых нетривиальных методов разведки, добычи, переработки или транспортировки. Это высоковязкая нефть, нефть, извлечённая из битуминозных песков, нефтяных сланцев и легкая нефть низкопроницаемых пород. Все перечисленные типы предлагается считать и трудноизвлекаемыми.

Высоковязкая нефть (heavy oil или bitumen в англоязычной литературе) – тип нефти с большим содержанием масел, смол, серы и асфальтенов, отличающийся высокой плотностью (менее 22 ◦ API) и вязкостью (до 10 тыс. сантипуаз). Она залегает в твёрдом, вязком или вязко-пластичном состояниях. Зачастую, говоря о высоковязкой нефти, подразумевают как тяжёлую (≤22 ◦ API), так и сверхтяжёлую нефть (≤10 ◦ API).

Самые крупные залежи сверхтяжёлой нефти расположены на территории Венесуэлы, в пределах пояса р. Ориноко, являющегося частью Восточно-Венесуэльской провинции. Плотность нефти по классификации API – от 20 до 6 ◦ API, вязкость – 1,5-10 тыс. сП. По данным МЭА, её добыча в 2012 г. составила 0,4 млн баррелей в сутки. По информации Геологической службы США (United States Geological Survey, USGS), мировые технически извлекаемые запасы достигают 513 млрд баррелей.

Битуминозные пески (oil sands, tar sands) – смесь песка, воды, глины и битумов. Данный ресурс обладает высокой плотностью (менее 10 ◦ API) и вязкостью в пределах 10 тыс. – 10 млн сП. Геологические запасы составляют 1 845 млрд баррелей, из которых лишь 168 млрд баррелей, по оценкам Совета по сохранению энергоресурсов (Energy Resources Conservation Board, ERCB), экономически извлекаемые. Самые крупные запасы находятся в Канаде, в провинции Альберта, где добыча в 2012 г. составила 0,7 млрд баррелей и ведётся двумя способами в зависимости от глубины залегания сырья:

  • 20% ресурсов, расположенных достаточно близко к поверхности, разрабатываются открытым карьерным способом (surface mining), а затем подвергаются дальнейшей обработке (ex situ processing);
  • 80%, залегающие на глубине свыше 70 м, добываются различными методами внутрипластовой добычи (in situ).

Нефтяные сланцы (они же горючие сланцы, oil shale или kerogen oil) – материнская порода, состоящая из известняка, алеврита и отложений глинистых сланцев, содержащая в себе как вызревшую (сланцевую нефть), так и большое количество недозревшей нефти (керогена, который после предварительной обработки может быть преобразован в товарную нефть).

По оценке МЭА, мировые геологические запасы керогеновой нефти составляют порядка 1 трлн барр. Наиболее крупное месторождение – Green River – расположено в США, на территории штатов Колорадо, Юта и Вайоминг. По подсчётам USGS, его экономически извлекаемые запасы составляют 1 млрд баррелей. Помимо США, перспективными странами в плане добычи данного ресурса являются Австралия, Бразилия, Израиль, Иордан, Китай, Марокко и Эстония.

В настоящее время нефть этого типа в небольших количествах добывается в Эстонии, Китае и Бразилии. По оценкам EIA DOE, в 2012 г. в целом по миру её производство составляло 10 тыс. барр./сут.

Нефть низкопроницаемых пород (tight oil, LTO, shale oil) – вызревшая лёгкая нефть c низкой плотностью (≥35 ◦ API), находящаяся в материнской породе или мигрировавшая в пласты с крайне низкой проницаемостью коллектора. Она извлекается методом, схожим со сланцевым газом: горизонтальным бурением и МГРП.

В 2013 г., проанализировав 41 страну, 95 бассейнов и 137 формаций, EIA DOE оценила технически извлекаемые запасы лёгкой нефти плотных пород на уровне 345 млрд барр. IHS в последнем исследовании North America’s Tight Oil Phenomena Poised to Go Global приводит схожую цифру – 300 млрд баррелей. BP в последнем прогнозе – 240 мдрд баррелей.

По информации EIA DOE, в 2012 г. добыча велась преимущественно на территории Соединённых Штатов, на уровне 2,4 млн барр./сут. За пределами США наибольший интерес вызывают перспективы разработки низкопроницаемых пород в Австралии, Аргентине, Венесуэле, Канаде, Ливии, Мексике, Пакистане, Китае и России (особенно в двух последних).

Важным нюансом является тот факт, что нефть низкопроницаемых пород (tight oil, shale oil) и сланцевая нефть (oil shale) существенно отличаются друг от друга и требуют различных методов добычи. Но в статьях зачастую их используют в качестве синонимов, что порой приводит к путанице в терминологии. При этом надо понимать, что добыча 2 млн барр./сут. жидких нетрадиционных углеводородов в США – это не сланцевая нефть, а нефть низкопроницаемых пород и газовый конденсат, получаемый из сланцевого газа (shale gas) и газа плотных пород (tight gas), как точно подметили в исследовании Сколково.

Источник

Нетрадиционные виды и источники углеводородного сырья и проблемы их освоения

Характеристика альтернативных источников углеводородного сырья. Сущность нефти и нефтяных песков, особенности карьерного способа его добычи. Производство синтетического топлива на основе процесса Фишера-Тропша. География распространения газогидратов.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 17.05.2016
Размер файла 300,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ

Кафедра Геологии и разведки месторождений полезных ископаемых

Тема: «Нетрадиционные виды и источники углеводородного сырья и проблемы их освоения»

Проверил: доцент. Арчегов В.Б.

Выполнил: студент гр. РМ-12 Исаев Р.А.

    Введение
  • 1.Нетрадиционные виды и источники углеводородного сырья
  • 2.Обзор альтернативных источников углеводородного сырья
    • Тяжелая нефть и нефтяные пески
    • Сланцевые месторождения
    • Процесс Фишера-Тропша
    • Шельфовые месторождения
  • 3.Газогидраты
    • Газовые гидраты в природе
    • География распространения газогидратов
    • Районы современной разведки на гидраты
    • Проблема промышленного освоения газогидратной формы скопления углеводородов
  • Заключение
  • Литература

Введение

Углеводороды представляют собой особые соединения широко распространенных элементов — водорода и углерода. Эти природные соединения добывают и используют уже тысячи лет: при строительстве дорог и зданий в качестве связую-щего материала, при строительстве и изготовлении водонепроницаемых корабельных корпусов и корзин, в живописи, для создания мозаичных полотен, для приготовления пищи и освещения. Сначала их добывали из редких выходов на поверхность, а затем из скважин. За последние два столетия добыча нефти и газа достигла беспрецедентных масштабов. Сейчас нефть и газ являются источниками энергии для почти всех видов человеческой деятельности.

XXI век уже давно прогнозируется, как век исчерпания основной части ресурсов углеводородов, вначале нефти, а затем и газа. Процесс этот неизбежен, поскольку все виды сырья имеют тенденцию выработки запасов, причем с той интенсивностью, с которой оно осваивается и реализуется. Если учесть, что современные мировые энергопотребности обеспечиваются в основном нефтью и газом -60% (нефть-36%, газ-24%), то все виды прогнозов об их исчерпании не могут вызывать сомнений. Меняются лишь сроки завершения углеводородной эры человечества. Естественно, что время выхода на заключительный этап освоения углеводородов не одинаково на разных континентах и в разных странах, но для большинства оно настанет при текущих объемах добычи нефти в пределах 2030- 2050 гг., при условии достаточно заметного воспроизводства их запасов. Однако уже около 20 лет добыча нефти в мире опережает прирост ее запасов.

Понятие традиционных и нетрадиционных ресурсов углеводородов не имеет однозначного определения. Большинство исследователей, понимая, что природные процессы и образования часто не имеют четких разграничений, предлагают использовать при определении нетрадиционных запасов и ресурсов такие понятия, как трудноизвлекаемые запасы и нетрадиционные ресурсы углеводородов. Трудноизвлекаемые запасы, добычной потенциал которых практически не используется, мало чем отличаются от традиционных запасов нефти и газа — за исключением ухудшения их геолого-промысловых характеристик. К нетрадиционным ресурсам углеводородов относятся, как принципиально отличные от традиционных по физико-химическим свойствам, так и по формам и характеру их размещения во вмещающей породе (среде).

1. Нетрадиционные виды и источники углеводородного сырья

Нетрадиционные ресурсы углеводородов, это та их часть, подготовка и освоение которых нуждается в разработке новых методов и способов выявления, разведки, добычи, переработки и транспорта. Они сосредоточены в сложных для освоения скоплениях, либо рассеяны в непродуктивной среде. Они плохо подвижны в пластовых условиях недр, в связи с чем нуждаются в специальных способах извлечения из недр, что повышает их себестоимость. Однако, достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение некоторых из них.

На начальном этапе исследований считалось, что их резервы практически неисчерпаемы, учитывая их масштабы (рисунок 1) и широкое распространение. Однако, многолетнее изучение различных источников нетрадиционных ресурсов углеводородов, проведенное во второй половине прошлого века, оставило в качестве реальных для освоения только тяжелые нефти, нефтяные пески и битумы, нефтегазонасыщенные низкопроницаемые коллектора и газы угленостных отложений. Уже на 14- Мировом нефтяном конгрессе (1994 г., Норвегия) нетрадиционные нефти, представленные только тяжелыми нефтями, битумами и нефтяными песками, были оценены в 400- 700 млрд. т, в 1,3- 2,2 раза больше традиционных ресурсов -. Проблематичными и дискуссионными в качестве промышленных источников газа оказались водорастворенные газы и газогидраты, несмотря на их широкую распространенность.

Рисунок 1 — Геологические ресурсы углеводородов

2. Обзор альтернативных источников углеводородного сырья

Тяжелая нефть и нефтяные пески

Геологические ресурсы в мире этого вида сырья огромны- 500 млрд. т. Запасы тяжелых нефтей с плотностью более вполне успешно осваиваются. При современных технологиях их извлекаемые запасы превышают 100 млрд. т. Особенно богаты тяжелыми нефтями и битуминозными песками Венесуэла и Канада. В последние годы растут объемы добычи тяжелых нефтей, составляя по разным оценкам около 12-15% от общемировой. Еще в 2000 г. в мире из тяжелых нефтей добывалось лишь 37, 5 млн.т. в 2005 г.- 42,5 млн.т., а к 2010-2015 гг. по прогнозу может составить уже около 200 млн.т., но при мировых ценах на нефть не ниже 50-60$/брр.

Нефтяные пески успешно разрабатывают в Канаде c 60-х годов прошлого века. Сегодня примерно половина нефти добываемой в этой стране приходиться на нефтяные пески. Под нефтяным песком, на самом деле, подразумевается смесь песка, воды, глины, тяжелой нефти и природного битума. Выделяют три нефтяных региона в Канаде со значительными запасами тяжелой нефти и природного битума. Это Athabasca, Peace River и Cold Lake. Все они находятся в провинции Альберта.

Для добычи нефти из нефтяных песков применяют два принципиально различных метода:

1) Открытым карьерным способом и 2) Непосредственно из пласта.

Карьерный способ добычи подходит для неглубоких залежей (глубиной до 75 м) и залежей, выходящих на поверхность. Примечательно, что в Канаде все залежи подходящие для карьерного способа добычи, расположены в районе Athabasca.

Карьерный способ добычи подразумевает, что нефтяной песок, попросту говоря, грузиться на самосвалы и перевозится на установку переработки, где его промывают горячей водой и таким образом отделяют нефть от всего прочего материала. Требуется добыть примерно 2 тонны нефтяного песка, чтобы получить 1 баррель нефти. Если это кажется вам довольно трудозатратным способом получить 1 баррель нефти, то вы правы. Зато коэффициент нефтеотдачи при этом способе добычи очень высок и составляет 75%-95%.

Рис. 1 Карьерный способ добычи нефтяного песка

Для извлечения тяжелой нефти непосредственно из пласта используют, как правило, тепловые способы добычи, такие как парогравитационное воздействие. Существуют также и «холодные» методы добычи, предполагающие закачку в пласт растворителей (например, метод VAPEX или технология N-Solv). Способы добычи тяжелой нефти непосредственно из пласта менее эффективны в плане нефтеотдачи по сравнению с карьерным способом. В то же время эти способы имеют некоторый потенциал к снижению себестоимости получаемой нефти за счет совершенствования технологий ее добычи.

Тяжелая/высоковязкая/битумная нефть привлекает все большее внимание нефтяной промышленности. Поскольку основные «сливки» в мировой нефтедобыче уже сняты, нефтяные компании просто вынуждены переключаться на менее привлекательные месторождения тяжелой нефти.

Именно в тяжелой нефти сосредоточены основные мировые запасы углеводородов. Вслед за Канадой, поставившей на свой баланс запасы тяжелой/битумной нефти, то же самое сделала и Венесуэла, имеющая огромные запасы этой нефти в поясе реки Ориноко. Этот «маневр» вывел Венесуэлу на первое место в мире по запасам нефти. Значительные запасы тяжелой нефти есть и в России, а также во многих других нефтедобывающих странах.

Огромные запасы тяжелой нефти и природных битумов требуют разработки инновационных технологий добычи, транспорта и переработки сырья. В настоящее время операционные затраты по добыче тяжелой нефти и природных битумов могут в 3-4 раза превосходить затраты на добычу легкой нефти. Переработка тяжелой высоковязкой нефти также более энергоемка и, как следствие, во многих случаях низкорентабельна и даже убыточна.

В России различные способы добычи тяжелой нефти испытывались на хорошо известном Ярегском месторождении высоковязкой нефти расположенном в Республике Коми. Продуктивный пласт этого месторождения, залегающий на глубине

200 м, содержит нефть плотностью 933 кг/м3 и вязкостью 12000-16000 мПа·с. В настоящее время на месторождении осуществляется термошахтный способ добычи, зарекомендовавший себя как достаточно эффективный и экономически оправданный.

На Ашальчинском месторождении сверхвязкой нефти, расположенном в Татарстане, реализуется проект по опытно-промышленному испытанию технологии парогравитационного воздействия. Эта технология, правда без особого успеха, испытывалась также на Мордово-Кармальском месторождении.

Результаты разработки месторождений тяжелой высоковязкой нефти в России пока не внушают особого оптимизма. Требуется дальнейшее совершенствование технологий и оборудования для повышения эффективности добычи. В то же время потенциал к снижению себестоимости добычи тяжелой нефти есть, и многие компании готовы принимать в ее добыче активное участие.

Сланцевая нефть — «модная» тема в последнее время. Сегодня целый ряд стран проявляют повышенный интерес к добыче сланцевой нефти. В США, где добыча сланцевой нефти уже идет, с ней связывают значительные надежды по снижению зависимости от импорта этого вида энергоресурса. В последние годы основной прирост добычи американской сырой нефти происходит преимущественно за счет сланцевых месторождений Bakken в Северной Дакоте и Eagle Ford в Техасе.

Развитие добычи сланцевой нефти — прямое следствие той «революции», которая случилась в США в добыче сланцевого газа. Поскольку цены на газ обвалились в результате резкого роста объемов его добычи, компании стали переключаться с добычи газа на добычу сланцевой нефти. Тем более что технологии их добычи ничем особенным не отличаются. Для этого, как известно, бурят горизонтальные скважины с последующими множественными гидроразрывами нефтесодержащих пород. Постольку поскольку дебит таких скважин очень быстро падает, для поддержания объемов добычи требуется бурить значительное количество скважин по очень плотной сетке. Поэтому затраты на добычу сланцевой нефти неизбежно оказываются выше, чем затраты на добычу нефти традиционных месторождений.

Пока цены на нефть высоки проекты по добыче сланцевой нефти, несмотря на высокие издержки, остаются привлекательными. За пределами США наиболее перспективными считаются залежи сланцевой нефти Vaca Muerta в Аргентине и Баженовская свита в России.

На сегодняшний день технологии добычи сланцевой нефти все еще находятся в начальной стадии развития. Себестоимость получаемого сырья хотя и имеет тенденцию к снижению, но, тем не менее, значительно выше себестоимости добычи традиционной нефти. Поэтому сланцевая нефть остается пока скорее перспективным резервом на будущее и вряд ли значительно повлияет на существующий рынок нефти. Такой же «революции», какая случилась на газовом рынке в связи с развитием добычи сланцевого газа, на рынке нефти ждать не приходится.

углеводородный газогидрат нефтяной топливо

Процесс Фишера-Тропша был разработан в 20-х годах прошлого века немецкими учеными Францем Фишером и Гансом Тропшем. Заключается он в искусственном соединении водорода с углеродом при определенной температуре и давлении в присутствии катализаторов. Получаемая таким образом смесь углеводородов сильно напоминает нефть и обычно называется синтез-нефть.

Рис. 2 Производство синтетического топлива на основе процесса Фишера-Тропша

CTL (Coal-to-liquids) — суть технологии состоит в том, что уголь без доступа воздуха и при высокой температуре разлагается на угарный газ и водород. Далее в присутствии катализатора из этих двух газов синтезируется смесь различных углеводородов. Затем эта синтезированная нефть также как и обычная проходит разделение на фракции и дальнейшую переработку. В качестве катализаторов используется железо или кобальт.

Во время Второй Мировой войны немецкая промышленность активно использовала технологию Coal-to-liquids для получения синтетического топлива. Но поскольку процесс этот экономически нерентабелен и к тому же экологически вреден, то после окончания войны выработка синтетического топлива сошла на нет. Немецкий опыт впоследствии был использован всего дважды — один завод был построен в ЮАР и еще один в Тринидаде.

GTL (Gas-to-liquids) — процесс производства жидких синтетических углеводородов из газа (природного газа, попутного нефтяного газа). Cинтез-нефть, получаемая в результате GTL процесса, не уступает, а по отдельным характеристикам превосходит высококачественную легкую нефть. Многие мировые производители используют синтез-нефть для улучшения характеристик тяжелой нефти, путем их смешивания.

Несмотря на то, что интерес к технологиям преобразования сначала угля, потом газа в синтетические нефтепродукты не угасает с начала 20 века, в настоящее время в мире функционирует всего четыре крупнотоннажных GTL завода — Mossel Bay (ЮАР), Bintulu (Малайзия), Oryx (Катар) и Pearl (Катар).

BTL (Biomass-to-liquids) — суть технологии та же что и уголь-в-жидкость. Единственное существенное отличие в том, что исходным материалом является не уголь, а растительный материал. Масштабное использование этой технологии затруднено в связи с отсутствием значительного количества исходного материала.

Недостатками проектов по производству синтетических углеводородов на основе процесса Фишера-Тропша являются: высокая капиталоемкость проектов, значительные выбросы углекислого газа, высокое потребление воды. В результате проекты либо совсем не окупаются, либо находятся на грани рентабельности. Интерес к таким проектам повышается в периоды высоких цен на нефть и быстро угасает при снижении цен.

Шельфовые месторождения

Добыча нефти на глубоководном шельфе требует от компаний высоких капитальных затрат, владения соответствующими технологиями и несет с собой повышенные риски для компании-оператора. Вспомнить хотя бы последнюю аварию на Deepwater Horizon в Мексиканском заливе. Компании BP только чудом удалось избежать банкротства. Чтобы покрыть все затраты и сопутствующие выплаты, компании пришлось продать чуть ли не половину своих активов. Ликвидация аварии и ее последствий, а также компенсационные выплаты обошлись BP в кругленькую сумму порядка 30 млрд. долларов.

Не каждая компания готова брать на себя такие риски. Поэтому проекты добычи нефти на глубоководном шельфе осуществляются, как правило, консорциумом компаний.

Шельфовые проекты успешно осуществляются в Мексиканском заливе, Северном море, на шельфе Норвегии, Бразилии и других стран. В России основные надежды связывают с шельфом арктических и дальневосточных морей.

Шельф арктических морей хотя и малоизучен, но обладает значительным потенциалом. Существующие геологические данные позволяют прогнозировать значительные запасы углеводородов в этом районе. Но и риски велики. Практикам нефтедобычи хорошо известно, что окончательный вердикт по наличию (или отсутствию) коммерческих запасов нефти можно вынести только по результатам бурения скважин. А их в Арктике пока что практически нет. Метод аналогий, который применяют в таких случаях для оценки запасов региона, может дать неверное представление о реальных запасах. Не каждая перспективная геологическая структура содержит нефть. Тем не менее, шансы обнаружить крупные месторождения нефти оцениваются экспертами как высокие.

К поиску и разработке залежей нефти в Арктике предъявляются чрезвычайно высокие требования по обеспечению охраны окружающей среды. Дополнительными препятствиями являются суровый климат, удаленность от существующей инфраструктуры и необходимость учета ледовой обстановки.

3. Газогидраты


Газовые гидраты в природе

Газовые гидраты (также гидраты природных газов или клатраты) — кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Название «клатраты» (от лат. clathratus — «сажать в клетку»), было дано Пауэллом в 1948 году. Гидраты газа относятся к нестехиометрическим соединениям, то есть соединениям переменного состава.

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка — очистка газа от паров воды.

География распространения газогидратов

Большая часть гидратов сосредоточена, по-видимому, на материковых окраинах, где глубина вод составляет примерно 500 м. В этих зонах вода выносит органический материал и содержит питательные вещества для бактерий, в результате жизнедеятельности которых выделяется метан. Обычная глубина залегания СПГГ — 100—500 м ниже морского дна, хотя иногда их обнаруживали и на морском дне. В районах с развитой многолетней мерзлотой они могут присутствовать и на меньших глубинах, так как температура на поверхности ниже. Крупные СПГГ были обнаружены на шельфе Японии, в районе Блейк Ридж к востоку от морской границы США, на материковой окраине района Каскадных гор около Ванкувера [Британская Колумбия, Канада] и на шельфе Новой Зеландии. Свидетельств об СПГГ, полученных путем прямого отбора образцов, во всем мире немного. Большая часть данных о нахождении гидратов получена косвенны-ми путями: посредством сейсмических исследований, ГИС, по результатам измерений во время бурения, по изменению минерализации поровой воды.

Пока известен только один пример добычи газа из СПГГ — на Мессояхском газовом месторождении в Сибири. Это месторождение, открытое в 1968 г., стало первым месторождением в северной части Западно-Сибирского бассейна, из которого был получен газ. К середине 80-х годов в бассейне было открыто более 60 других месторождений. Суммарные запасы этих месторождений составляли 22 трлн. м 3 или одну треть мировых запасав газа. Согласно оценке, сделанной до начала добычи, запасы Мессояхского месторождения были равны 79 млн. м 3 газа, из которых одна треть содержалась в гидратах, перекрывающих зону свободного газа.

Если не считать Мессояхского месторождения, наиболее изученными являются СПГГ в районе Прудо Бей — Кипарук Ривер на Аляске. В 1972 г. на разведочной скважине ARC0 и Exxon 2 Норт-Уэст Эйлин на Северном склоне Аляски были подняты гидратосодержащие образцы в герметизированных керноотборниках. По градиентам давления и температуры в регионе можно рассчитать толщину зоны устойчивого состояния или стабильности гидратов в районе Прудо Бей — Кипарук Ривер. Согласно оценкам, гидраты должны быть сосредоточены в интервале 210— 950 м.

Районы современной разведки на гидраты

Специалисты Геологической службы Канады (GCSJ, Японской национальной нефтяной корпорации (JN0CI, Японской нефтяной разведочной компании (JAPEX1, Геологической службы США, Министерства энергетики США и нескольких компаний, в том числе Шлюмберже, провели исследование газогидратной залежи (ГТЗ) в дельте р. Маккензи (Северо-Западные территории, Канада) в рамках совместного проекта. В 1998 г. рядом со скважиной кампании Imperial Oil Ltd., вскрывшей скопление гидратов, была пробурена новая исследовательская скважина Маллик 2L-38. Цель этой работы заключалась в том, чтобы оценить свойства гидратов в естественном залегании и оценить возможность определения этих свойств с помощью скважинных приборов, спускаемых на кабеле.

Опыт, приобретенный в ходе исследований на скв. Маллик, оказался очень полезным для изучения свойств природных гидратов. JAPEX и связанные с ней группы решили начать новый проект бурения на гидраты во впадине Нанкай на шельфе Японии. Около десятка площадей были оценены как перспективные на гидраты по признаку наличия BSR( подобно- донные отражающие границы).

Проблема промышленного освоения газогидратной формы скопления углеводородов

Устойчивость морского дна. Разложение гидратов может привести к нарушению устойчивости придонных отложений на континентальных склонах. Подошва ЗГТ может быть местом резкого снижения прочности толщи осадочных пород. Присутствие гидратов может препятствовать нормальному уплотнению и консолидации отложений. Поэтому свободный газ, удерживаемый ниже ЗГТ, может оказаться под повышенным давлением. Таким образом, любая из технологий разработки месторождений гидратов может оказаться успешной только в том случае, если будет исключено дополнительное снижение устойчивости пород. Пример осложнений, возникающих при разложении гидратов, можно найти у Атлантического побережья США. Здесь уклон морского дна составляет 5°, и при таком уклоне дно должна быть устойчиво. Однако наблюдается много подводных оползневых уступов. Глубина этих уступов близка к предельной глубине зоны стабильности гидратов. В районах, где происходили оползни, BSR менее отчетливы. Это может служить признаком того, что в настоящее время гидратов уже нет, так как они переместились. Существует гипотеза, согласно которой при снижении давления в СПТТ, как это должно было произойти при снижении уровня моря в ледниковый период, могло начаться разложение гидратов на глубине и, как следствие, сползание отложений, насыщенных гидратами.

Такие районы были обнаружены у побережья Сев. Каролины, США. В зоне огромного подводного оползня шириной 66 км сейсмическими исследованиями было установлено наличие массивного СПТТ по обе стороны от оползневого уступа. Однако под самим уступом гидратов нет.

Подводные оползни, обусловленные наличием гидратов, могут повлиять на устойчивость морских платформ и трубопроводов.

Многие специалисты считают, что часто упоминаемые оценки количества метана в гидратах преувеличены. И даже если эти оценки верны, гидраты могут быть рассеяны в осадочных породах, а не сконцентрированы в виде крупных скоплений. В таком случае добывать их может быть сложно, экономически не выгодно и опасно для окружающей среды.

Заключение

Состояние изученности нетрадиционных видов сырья и их освоенности в мире все еще низкое, но вместе с исчерпанием традиционных резервов страны с дефицитом углеводородов все чаще обращаются к их нетрадиционным источникам. Большая часть мероприятий так же, как и предложений по стимулированию добычи, направлена исключительно на группу трудноизвлекаемых нефтей и газов. Собственно же нетрадиционные ресурсы УВ находятся за пределами внимания как нефтегазовых компаний, так и государственных органов управления недропользованием.

Таким образом, применительно к современной ситуации основные виды нетрадиционных ресурсов углеводородов можно разбить на группу подготовленных для промышленного (или опытно-промышленного) освоения, группу, требующую изучения, оценки и учета на балансе, а также для которой необходима разработка технологий с вовлечением в освоение в долгосрочной перспективе, и группу проблемных и гипотетических объектов.

По возможности вовлечения в освоения нетрадиционные ресурсы углеводородов можно разделить на три неравнозначные группы. Практическую значимость в качестве углеводородного сырья среди нетрадиционных источников углеводородов уже в настоящее время имеют трудноизвлекаемые (тяжелые высоковязкие) нефти, битумы и нефтяные пески. В среднесрочной перспективе к этой группе можно будет относить газы и нефть в сланцах.

К природным газогидратам нефтяные компании пока интереса не проявляют. В то же время на рынке технологий в скором времени появится новый продукт, основанный на свойстве природного газа в определенных условиях образовывать твердые соединения (кстати, до сих пор это свойство приносило одни хлопоты и расходы, так как благодаря ему в газопроводах в зимнее время нередко возникают газогидратные пробки). К разработке этого продукта причастны сразу несколько крупных компаний, включая Shell, Total, Arco, Phillips и другие. Речь идет о преобразовании природного газа в газогидраты, что обеспечивает его транспортировку без использования трубопровода и хранение в наземных хранилищах при нормальном давлении. Разработка этой технологии явилась побочным продуктом десятилетних исследований природных газогидратов в норвежских научных лабораториях.

В целом нетрадиционные ресурсы углеводородов — это существенный резерв и для восполнения сырьевой базы нефти и газа для многих стран.

1. Макогон Ю.Ф. «Гидраты природных газов», Недра, 1974

2. Баженова О.К., Бурлин Ю.К. «Геология и геохимия нефти и газа», МГУ 2004

3. Якуцени В. П., Петрова Ю. Э., Суханов А.А. «Нетрадиционные ресурсы углеводородов — резерв для восполнения сырьевой базы нефти и газа России», ВНИГРИ, СПб., 2009, 20с.

Размещено на Allbest.ru

Подобные документы

Состав углеводородного сырья нефтегазоконденсатных месторождений Северной бортовой зоны Прикаспийской впадины. Методы предотвращения коррозии металлов, гидратообразования, парафиноотложения и солеотложения при сборе и подготовке углеводородного сырья.

диссертация [617,1 K], добавлен 31.12.2015

Характеристика нефтяной платформы как сложного инженерного комплекса. Типы нефтяных платформ: стационарная, мобильная, полупогружная. Назначение, устройство и эксплуатация нефтяной платформы Eva 4000. Бурение скважины и добычи углеводородного сырья.

реферат [525,3 K], добавлен 27.10.2015

Общие сведения о нефтяной промышленности, как в мире, так и в России. Мировые запасы нефти, ее добыча и потребление. Рассмотрение территориальной организации добычи и переработки нефти в Российской Федерации. Основные проблемы развития отрасли в стране.

курсовая работа [715,1 K], добавлен 21.08.2015

Технология термического воздействия на пласт высоковязких нефтей и природных битумов. Сущность метода внутрипластового горения. Разработка нефтяных (битумных) месторождений открытым способом. Опыт шахтной добычи тяжелой нефти в России и ее недостатки.

реферат [194,5 K], добавлен 08.05.2015

История морской добычи нефти. География месторождений. Типы буровых установок. Бурение нефтяных и газовых скважин в арктических условиях. Характеристика морской добычи нефти в России. Катастрофы платформ, крупнейшие аварии на нефтедобывающих платформах.

курсовая работа [57,5 K], добавлен 30.10.2011

Источник

Читайте также:  Назовите способы оценки нематериальных активов
Оцените статью
Разные способы