Нестандартные способы решения тригонометрических уравнений исследовательская работа

«Нестандартные способы решения тригонометрических уравнений графическим методом»

Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений. И именно графический метод был один из первых. Почему?

В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд».

Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников.

В 10 классе мы уже немало знаем о тригонометрических уравнениях, знакомы с разнообразными способами решения. Поэтому мы теперь можем применить наши знания и оптимизировать способы графического решения подобных задач с помощью информационных технологий, таких, например, как программа GeoGebra.

Скачать:

Вложение Размер
osnovnye_tseli_raboty.docx 16.6 КБ
rabochiy_list.docx 60.85 КБ
nestandartnye_sposoby_resheniya_trigonometricheskih_uravneniy_graficheskim_metodom.pptx 2.94 МБ

Предварительный просмотр:

Тема: «Нестандартные способы решения тригонометрических уравнений графическим методом».

Актуальность: высокая практическая значимость работы для использования в учебном процессе и при подготовке к ЕГЭ

Основные цели работы:

  • освоить способы создания динамических чертежей с помощью программы GeoGebra;
  • изучить возможности использования программы GeoGebra в учебном процессе при подготовке к ЕГЭ и при подготовке докладов для научно-практических конференций;
  • отработать технологию решения тригонометрических уравнений графическим способом с помощью динамической программы GeoGebra;

Объект исследования: Тригонометрические уравнения

Предмет исследования: изменение тригонометрической функции при различных значениях аргумента и других дополнительных параметров

Предположение исследования: программа GeoGebra позволяет визуально проследить изменение поведения функции при различных значениях аргумента и других дополнительных параметров.

  • Использовать современные информационные технологии в ходе решения математических задач.
  • Отработать алгоритм решения простейших тригонометрических уравнений графическим способом;
  • Выработать прочные навыки решения простейших тригонометрических уравнений графическим способом;
  • Рационально подходить к выбору прикладных программ для решения поставленных задач.
  • Развивать логическое мышление, память, математическую речь.

Методы: эмпирический (практическая работа в программе); аналитический (анализ полученных результатов)

1. Знакомство с синтаксисом программы GeoGebra.

2. Освоение опций и функций программы.

3. Практическая работа: построение графиков. Сравнение графического и аналитического методов.

4. Анализ и описание полученных результатов.

Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений. И именно графический метод был один из первых. Почему?

В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд».

Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников.

В 10 классе мы уже немало знаем о тригонометрических уравнениях, знакомы с разнообразными способами решения. Поэтому мы теперь можем применить наши знания и оптимизировать способы графического решения подобных задач с помощью информационных технологий, таких, например, как программа GeoGebra.

Предполагается, что в результате работы будут:

1. Изучены (в первом приближении) основные возможности программы GeoGebra по созданию динамических чертежей.

2. Собрана (с использованием возможностей Интернета) библиотека файлов, содержащих графические иллюстрации к задачам типа С5 с параметрами.

3 Сформулированы основные принципы использования программы GeoGebra для иллюстрации решений тригонометрических уравнений графическим способом:

  • динамическое изменение параметра позволяет демонстрировать взаимодействие графиков в режиме реального времени;
  • функция «паузы» позволяет зафиксировать положение графиков при критических значениях параметра, которые потом необходимо вычислить аналитически;
  • введение дополнительного параметра в условие задачи, отличного от заданного, позволяет продемонстрировать принципиальные изменения в исходной конфигурации, которые приводят к появлению новых критических значений параметра.

Предварительный просмотр:

Рабочая карта учащегося

Тема: «Нестандартные способы решения тригонометрических уравнений графическим методом».

Решите самостоятельно уравнение графическим методом в интерактивной среде Geogebra;

  • Откройте Geogebra(Пуск – Все программы – Geogebra)
  • Настойте координатную плоскость(по оси аргумента – единичный отрезок π/2);
  • Введите через строку ввода соответствующие функции;

Для того, чтобы решить данное уравнение, нам также необходимо построить два графика функций и .

Для этого не потребуется строить таблицы, но понадобится подготовить координатную плоскость. Правой клавишей мыши щелкните по координатной плоскости. В появившемся диалоговом окне поставьте флажок «шаг» и выберите значение π/2. Закройте диалоговое окно. Внесем функции через строку ввода. Для построения первой функции вводим следующее: . Для построения второй функции вводим .

Построение графика функции y= sin x

Построение графика функции y= cos x

Преобразования графика функции y= sin x

Руководство: используя ползунки, выясните, как влияет на график функции

y= sin x
1) амплитуда А;
2) частота w;
3) начальная фаза φ_0;
4) свободный член b?

Преобразования графика функции y= cos x

Руководство: используя ползунки, выясните, как влияет на график функции y= cos x
1) амплитуда A;
2) частота w;
3) начальная фаза φ_0;
4) свободный член b?

  1. Решите следующие уравнения графическим методом и аналитическим путем.
  • Упростите левую часть уравнения;
  • Окройте интерактивную среду Geogebra;
  • Выполните построение;

Графический метод решения в Geogebra

Аналитический метод решения

Не требуется знать формулы

Требуется знать формулы

Необходимо уметь набирать функции

Нет необходимости учиться набирать функции

  1. Операция «Спасение».

«Пираты решили захватить главнокомандующий боевой крейсер, не подозревая о существовании эскадрильи из трех боевых кораблей. Вы находитесь на одном из них. Ваша задача: выяснить, в каких точках вашего маршрута вы пересечетесь с пиратским кораблем и сможете его обезвредить. Ваш маршрут движения задан графиком . Маршрут движения пиратов задан графиком функции g(x)=1 ».

«Пираты решили захватить главнокомандующий боевой крейсер, не подозревая о существовании эскадрильи из трех боевых кораблей. Вы находитесь на одном из них. Ваша задача: выяснить, в каких точках вашего маршрута вы пересечетесь с пиратским кораблем и сможете его обезвредить. Ваш маршрут движения задан графиком . Маршрут движения пиратов задан графиком функции g(x)=1 ».

«Пираты решили захватить главнокомандующий боевой крейсер, не подозревая о существовании эскадрильи из трех боевых кораблей. Вы находитесь на одном из них. Ваша задача: выяснить, в каких точках вашего маршрута вы пересечетесь с пиратским кораблем и сможете его обезвредить. Ваш маршрут движения задан графиком . Маршрут движения пиратов задан графиком функции g(x)=1 ».

Задание. Создать динамическую модель для иллюстрации поведения функции y=a cos(bx+c) в зависимости от параметров а, b и с. Рисуем график квадратичной функции в зависимости от ее коэффициентов. Изменение любого из трех коэффициентов изменяет поведение параболы. Модель можно посмотреть, перейдя по ссылке http://ggbtu.be/m221351 К онечный результат представлен на рисунке.

Предварительный просмотр:

Подписи к слайдам:

Тема: «Нестандартные способы решения тригонометрических уравнений графическим методом» Выполнила: Быстрова Карина Ученица 10 класса

Актуальность: высокая практическая значимость работы для использования в учебном процессе и при подготовке к ЕГЭ Основные цели работы: освоить способы создания динамических чертежей с помощью программы GeoGebra; изучить возможности использования программы GeoGebra в учебном процессе при подготовке к ЕГЭ и при подготовке докладов для научно-практических конференций; отработать технологию решения тригонометрических уравнений графическим способом с помощью динамической программы GeoGebra;

Задачи Использовать современные информационные технологии в ходе решения математических задач. Отработать алгоритм решения простейших тригонометрических уравнений графическим способом; Выработать прочные навыки решения простейших тригонометрических уравнений графическим способом; Рационально подходить к выбору прикладных программ для решения поставленных задач. Развивать логическое мышление, память, математическую речь.

Введение Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений. И именно графический метод был один из первых. Почему? В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд». Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников.

Ее возможности: Построение кривых: Построение графиков функций Построение сечений Окружности Параболы Гиперболы и др. Вычисления: Сложение, умножение Вычисления с комплексными числами Вычисление определителя А также работа с таблицами, создание анимации и многое другое.

При исследовании программы и работе с ресурсами интернета на официальном сайте GeoGebra я нашла простейшее построение графиков функции y= sinx и y= cosx , благодаря различным возможностям программы и анимации, мы можем увидеть как меняются графики при некотором изменении параметров , что очень облегчает работу при решении тригонометрических функций. Благодаря работам других людей я также с легкостью научилась преобразовывать графики функций, что значительно облегчило мне дальнейшее исследование программы. Построение графика функции y= sin x Построение графика функции y= cos x Преобразования графика функции y= sin x Преобразования графика функции y= cos x

Отработка практических навыков. Задание №1 Необходимо решить уравнения: 1. 2. cos x = -1 Решение: Для того, чтобы решить данное уравнение, нам также необходимо построить два графика функций и Для этого не потребуется строить таблицы, но понадобится подготовить координатную плоскость (по оси аргумента – единичный отрезок π /2). Для построения первой функции мы вводим в строку ввода следующее: На экране появляется первый график:

Далее для построения второй функции вводим: и при помощи функций программы отмечаем точки пересечения двух построенных графиков. Конечный результат: Практические\1. ggb

2. Аналогично решаем и второе уравнение. В строку ввода вводим необходимые данные y = sin x и y =1/2, определяем точки пересечения графиков, это и будет являться решением данного уравнения. Конечный результат представлен на рисунке: Практические\2. ggb

Задание №2. Операция «Спасение» Решим это задание графическим методом, опираясь на полученные знания.

Как и в предыдущем задании нам необходимо построить два графика: и y =1 . Отметив точки пересечения графиков мы найдём место пересечения нашего корабля и корабля пиратов. Это и будет являться решением. В нашем случае это точки А (со значением – π ), В(3 π ) и С ( π ) Практические\корабль синих. ggb

Миноносец «Боевой» Аналогичным способом решаем и эту задачу. В строку ввода вводим заданные формулы в соответствии с синтаксисом программы и ищем точки пересечения.

Практические\корабль красных. ggb Построив графики, мы сразу видим решение задачи. Точки А , В , С и D – точки пересечения кораблей.

Миноносец «Внушительный» Также в строку ввода вводим необходимые функции и ищем точки пересечения кораблей.

Точки пересечения кораблей – А и В . Практические\корабль желтых. ggb

Задание № 3. Создание динамической модели. Задание. Создать динамическую модель для иллюстрации поведения функции y = a cos ( bx + c ) в зависимости от параметров а , b и с . Для выполнения этого типа задания нам потребуются ползунки, которые отвечают за динамическое изменение параметров функции при различных значениях в режиме реального времени. Для начала рисуем график квадратичной функции (вводим формулу в строку ввода в соответствии с синтаксисом программы), затем создаем ползунки для параметров a , b и c .

При изменении любого из этих коэффициентов изменяется и поведение параболы. Это в свою очередь позволяет нам наглядно представить изменение графика, а функция «паузы» позволяет зафиксировать поведения графика при критических значениях параметра. Конечный результат представлен на рисунке, а саму модель можно посмотреть, перейдя по ссылке. Практические\динамическая модель. ggb

Основные выводы работа с программой GeoGebra в динамическом режиме активизирует сильных учеников, делает их подготовку более целенаправленной и индивидуальной; работа с программой GeoGebra очень удобна для демонстрации трудностей, возникающих при использовании графического метода решения задач с параметрами; работа с программой GeoGebra требует минимального уровня информационно-компьютерной грамотности учителя и учащихся и разумных временных затрат для получения желаемого результата.

Источник

Исследовательская работа на тему» Тригонометрические уравнения в заданиях ЕГЭ»

МБОУ « Мордовско-Паёвская СОШ» Инсарского района РМ

Выполнила: Пантилейкина Надежда,

ученица 11 класса

Руководитель: Кадышкина Н.В.,

Глава I. О тригонометрических уравнениях…………………………………..…5

1) Основные типы тригонометрических уравнениях и методы их решения:

1. Уравнения, сводящиеся к простейшим. …………………………………..5

2. Уравнения, сводящиеся к квадратным…………………………………….5

3. Однородные уравнения acosx + b sin x = 0………………………………. 6

4.Уравнения вида acosx + b sin x = c , с≠ 0…………………………………7

5. Уравнения, решаемые разложением на множители…………………. ….7

6. Нестандартные уравнения………………………………………………….8

Глава II. Основные понятия и формулы тригонометрии…………………….8-10

Глава II I . Уравнения предлагавшиеся на ЕГЭ прошлых лет…………. ……10-14

«Единственный путь, ведущий к знаниям — это деятельность. »

Бернард Шоу

Через несколько месяцев я заканчиваю школу.

Чтобы не было проблем с дальнейшим выбором жизненного пути, необходимо получить школьный аттестат, а для того чтобы получить школьный аттестат, необходимо сдать два обязательных экзамена в форме ЕГЭ — и один из них математика . Что уж там говорить, выпускные экзамены — ответственный период в жизни любого школьника, от которого зависит не только итоговая оценка в аттестате, но и его профессиональное будущее, доход и карьера.

Единый Государственный Экзамен – это важный тест перед переходом в новую жизнь и поступлением в университет или колледж. Особенно важно сдать его на хорошие баллы. ЕГЭ по математике — серьезное испытание и без хорошей базы ученик не сможет претендовать на приличный результат.

Как не допустить провала на экзамене и получить хорошие баллы? Для этого необходимо хорошо решить задания. Я не претендую на максимальный балл, тем не менее старательно готовлюсь. И заметила, что даже на первом задании части С, а, именно, на решении тригонометрических уравнениях и их системах допускаю ошибки. На первый взгляд, задача С1 – это относительно несложное уравнение или система уравнений, которое может содержать тригонометрические функции, одним из основных подходов к решению которых состоит в их последовательном упрощении с целью сведения к одному или нескольким простейшим. Так почему я ошибаюсь?

Актуальность темы определяется тем, что учащиеся должны разбираться в тех или иных способах решения тригонометрических уравнений.

Поэтому, перед собой я поставила следующую цель:

Систематизировать, расширить знания и умения, связанные с применением методов решения тригонометрических уравнений.

Объектом исследования является изучение тригонометрических уравнений в заданиях ЕГЭ.

Предмет исследования — является решение тригонометрических уравнений

Таким образом, основной целью написания данной курсовой работы является изучение тригонометрических уравнений и их систем, способы их решения.

В соответствии с целями, объектом и предметом исследования определены следующие задачи:

1). Изучить все задания, связанные с решением тригонометрических уравнений, предлагавшиеся на ЕГЭ работ предыдущих лет и при выполнении диагностических работ;

2) Изучить методы решения тригонометрических уравнений.

3). Выявить основные возможные ошибки при решении таких уравнений;

4). Выяснить причину допущения таких ошибок.

5)Рассмотреть рекомендации по решению тригонометрических уравнений;

6). Сделать выводы.

В своей работе я решу несколько тригонометрических уравнений, покажу возможные ошибки при их решении и постараюсь ответить на следующие вопросы:

1). Можно ли избежать ошибок при выполнении заданий типаС1

2) Если я буду тренироваться в решении уравнений такого типа, то я смогу

ли безошибочно выполнять такие задания?

Для этой цели я изучила все демонстрационные и тренировочные задания, проводимые с нами, материалы ЕГЭ предыдущих лет;

изучила справочные источники;

самостоятельно решала задания из Интернета;

консультировалась со своим учителем в случае затруднения;

училась анализировать и правильно оформлять результаты.

Глава I . О тригонометрических уравнениях.

1) Определение 1. Тригонометрическим уравнением называется уравнение, содержащее переменную под знаком тригонометрических функций.

Простейшие тригонометрические уравнения — это уравнения вида sin x = a ,

cos x=a, tg x=a, ctg x = a.

В таких уравнениях переменная находится под знаком тригонометрической функции, а — данное число.

Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения.

2)Основные типы тригонометрических уравнений.

Уравнения, сводящиеся к простейшим.


Решение:

Ответ:

Уравнения, сводящиеся к квадратным.

1) Решить уравнение 2 sin 2 x – cosx –1 = 0.

Ответ:

Однородные уравнения : asinx + bcosx = 0

a sin 2 x + b sinxcosx + c cos 2 x = 0.

Решить уравнение 2sinx – 3cosx = 0

Решение: Пусть cosx = 0, тогда 2sinx = 0 и sinx = 0 – противоречие с тем,

что sin 2 x + cos 2 x = 1. Значит cosx ≠ 0 и можно поделить уравнение на cosx.

Ответ:

Уравнения вида a sinx + b cosx = с, с ≠ 0.

Пример: Решить уравнение

Решение:

Ответ:

Уравнения, решаемые разложением на множители.

Припер: Решить уравнение sin2x – sinx = 0.

Решение: Используя формулу sin2x = 2sinxcosx, получим

2sinxcosx – sinx = 0,

sinx (2cosx – 1) = 0.

Произведение равно нулю, если хотя бы один из множителей равен нулю.

Ответ:

Решить уравнение cosx = х 2 + 1.

Глава II . Основные понятия и формулы тригонометрии.

Тригонометрические уравнения — обязательная тема любого экзамена по математике.

О х, сколько мучений доставляет ученикам изучение тригонометрии.

Определенные сложности возникают даже в том случае, если рядом учитель по математике и объясняет каждую мелочь. Это и понятно, одних только базовых формул существует более двадцати. А уж если считать их производные … Ученик путается в вычислениях и никак не может запомнить механизмы, при помощи которых эти формулы позволяют найти, например, .

Вы знаете формулы — вам легко решать. Не знаете — не поймете, даже если дадут формулу.
Формулу нужно не просто тупо знать, а знать куда ее можно применить, как раскрыть и в чем суть формулы, а для этого вам нужно решать примеры именно для тех задач, которые даются с трудом.

Мне поначалу казалось, тригонометрия — это скучный набор формул и графиков. Однако, знакомясь с новыми понятиями тригонометрии и методами решения тригонометрических уравнений, каждый раз убеждалась, насколько интересен и увлекателен мир тригонометрии.

Во- первых, для успешного решения тригонометрических уравнений нужно хорошо знать тригонометрические формулы, причем не только основные, но и дополнительные (преобразование суммы тригонометрических функций в произведение и произведения в сумму, формулы понижения степени и другие), так как использование на ЕГЭ шпаргалок и мобильных телефонов запрещается

Во- вторых , мы должны четко знать стандартные формулы корней простейших тригонометрических уравнений (полезно помнить или уметь получать с помощью тригонометрической окружности упрощенные формулы для корней уравнений)

Каждое из таких уравнений решается по формулам, которые следует знать. Вот эти формулы:

а) Функция y = sin x . Функция ограниченная: находится в пределах [-1; 1]. Это значит, что при решении уравнений типа sinx =2 или sinx =-5 в ответе получается: нет корней. Формулы для функции у= sinx

1) sinx =a, x= (-1) n arc sin a +n,nZ

2) sinx = — a, x= (-1) n+1 arc sin a +n,nZ

Также, нужно знать частные случаи: 1) sinx =- 1,

2) sinx =0,

3) sinx = a ,

Также нужно уметь решение в виде двух серий корней

.

2 . Функция y = cos x . Функция ограниченная: находится в пределах [-1; 1]. Это значит, что при решении уравнений типа cos x =2 или cos x =-5 в ответе получается: нет корней. Формулы для функции у= cos x :

1. cosx =a, X=± arccos a+2n,nZ

2. cos x=-a, X=±(  — arccos a)+2n,nZ

Частные случаи: 1. cosx =-1, X =  +2 n , nZ

2. cosx =0,

3. cosx =1, X= 2n,nZ

3. Функция y = tg x .

Тут всего одна формула, без частных случаев: tg x = ± a .

х = ± arctg a+n,nZ

В-третьих, надо знать значения тригонометрических функций;

В- четвёртых, Если в уравнении тригонометрическая функция находится под знаком радикала, то такое тригонометрическое уравнение будет иррациональным. В таких уравнениях следует соблюдать все правила, которыми пользуются при решении обычных иррациональных уравнений (учитывается область допустимых значений как самого уравнения, так и при освобождении от корня четной степени).

V . Уравнения, предлагавшиеся на ЕГЭ прошлых лет.

«Метод решения хорош, если с самого начала мы можем предвидеть – и впоследствии подтвердить это, — что, следуя этому методу, мы достигнем цели».

1. Уравнения, сводящиеся к квадратному.

С1. Решить уравнение:

Решение: Воспользовавшись основным тригонометрическим тождеством, перепишем уравнение в виде

Заменой cos = t уравнение сводится к квадратному:2 t 2 + 9 t -5 =0, которое имеет корни t 1 = ½ и t 2 = -5. Возвращаясь к переменной х, получим ,

Второе уравнение корней не имеет так как | cosx |≥1, а из первого x =±+6 k , kZ

Ответ: =±+6 k , kZ

Вывод: вводя новую переменную, нужно учитывать, что значения sin x и cos x ограничены отрезком , а иначе появятся посторонние корни.

2. Уравнения, решаемые разложением на множители

Задание С1 ( 2011 г.)

а) Решить уравнение

б) Указать корни уравнения, принадлежащие отрезку

Решение: а) решаем разложением левой части на множители:

группируем и выносим общий множитель за скобки, получим

Уравнение 1) решений не имеет.

Второе уравнение однородное, решается делением почленно на cosx ≠0, получим , откуда

б)

Ответ: а) б)

1.При решении уравнения такого вида, во – первых, нужно знать, что | sin х|≤1 и | cosx |≤1, и уравнение sinx =-2 решений не имеет;

2.Во – вторых, обосновать деление на cosx ≠о ( так как , если cosx =0,то sin х=0 , а это невозможно;

в- третьих, обоснованно произвести отбор корней, принадлежащие данному промежутку

3.Уравнение на применение формул приведения

С1 ( 2010 г.) Дано уравнение

а) решить уравнение;

б) Указать корни, принадлежащие отрезку

Решение: Используя формулы приведения, получим :

sin 2 x – cos x =0,

2 sinx cosx- cosx =0,

с osx (2 sinx -1 )=0, откуда cosx= 0 или sinx =½,

б) Найдем значения к, при которых корни будут принадлежать

указанному промежутку. Для того, чтобы выбрать корни. принадлежащие заданному промежутку, решение представим в виде :

б) Найдем значения к, при которых корни будут принадлежать указанному промежутку .

2)

Решая это неравенство, целого

значения к не получим.

Ответ: а)

б)

При решении уравнения такого вида, необходимо знать формулы приведенного уравнения и правильно её применить; уметь представлять решениена две серии корней; правильно выбрать корни, принадлежащие заданному отрезку.

4. Системы тригонометрических уравнений

С1 (2010). Решить систему уравнений

Решение: О.Д.З

Дробь равна нулю, если числитель равен 0, а знаменатель не равен 0.

Из уравнения 2 sin 2 x – 3 sinx +1 =0, решая методом введения новой переменной, находим

или sin x =1.

1)Пусть , тогда и у = cos x = ›0 ( используя основное тригонометрическое тождество)

либо и — нет решения.

2) Пусть sinx = 1, тогда у = cos x = 0 – нет решения.

Ответ: и у =

Вывод: 1) нужно учитывать ограниченность тригонометрических

2) Записывать и учитывать О.Д.З.

5. С1 ( ЕГЭ 2011 г.) Решить уравнение:

О.Д.З. – cos x ≥ 0, sin х ≤ 0.

4sin 2 x + 12 sinx + 5 = 0 или cos x =0

sinx = t

4 t 2 + 12 t + 5=0, откуда t 1=-½ , t 2 = —

sinx = -½ sinx =- — не имеет решения

х =

х =

с учётом О.Д.З. х =

Ответ: х =

Вывод: Ответ записать с учётом О.Д.З.

В проделанной мною работе были изучены решения тригонометрических уравнений, рассмотрены рекомендации по решению тригонометрических уравнений, методы решения тригонометрических уравнений и рассмотрены ошибки, которые возможны при их решении.

Я пришла к следующим выводам:

1. Задания типа С1 проверяют умение решать тригонометрические уравнения. Эти задания являются, действительно, несложными, что придаёт лишнюю самоуверенность и усыпляют внимательность. Единственной сложностью этих заданий является то, что, решив уравнение или систему уравнений, отбросить посторонние корни.

2. Задача С1 – это самая простая задача группы С. При ее решении не должны возникать громоздкие преобразования и сложные вычисления. Если же они появились – немедленно нужно остановиться, проверить решение и попробовать понять, что же здесь не так.

3. В конечном итоге, главное требование — решение должно быть математически грамотным, из него должен быть понятен ход рассуждений. Нужно постараться записать свое решение кратко и понятно, но главное – правильно!

4. И самое главное — чтобы научиться без ошибок решать уравнения , надо их решать! Ведь, как говорил Пойа, « Если хотите научиться плавать, то смело ныряйте в воду, а если хотите научиться решать задачи, надо их решать!»

Приложение 1 ( основные формулы тригонометрии)

1) основное тригонометрическое тождество sin 2 α + cos 2 α= 1,

Деля это уравнение на квадрат косинуса и синуса соответственно имеем

2)формулы двойного аргумента sin 2α =2 sin α cos α,

cos 2 α = cos 2 α — sin 2 α ,

cos 2α = 1- 2 sin 2 α,

3)формулы понижения степени:

4) формулы суммы и разности двух аргументов:

sin (α+ β )= sin α cos β + cos α sin β

sin (α- β )= sin α cos β — cos α sin β

cos (α+ β )= cos α cos β + sin α sin β

cos (α- β )= sin α cos β + sin α sin β

Формулами приведения называются формулы следующего вида:

Суммы суммы и разности тригонометрических уравнений

Чётность

Косинус— чётная, синус, тангенс и котангенс— нечётные , то есть:

Непрерывность

Синус и косинус — непрерывные функции . Тангенс и имеет точки разрыва

,котангенс 0; ±π; ±2π;…

Периодичность

Функции y = cos x , y = sin x — периодические с периодом 2π,

функции y = tg x и y = ctg x — c периодом π.

Знаки тригонометрических функций по четвертям

Источник

Читайте также:  Какие есть способы подачи продуктов порциями
Оцените статью
Разные способы