- Решение систем линейных неравенств графически
- Неравенство с одной переменной решение систем графическим способом
- Графический метод
- Пример 1
- Пример 2
- Пример 3
- Пример 4
- Пример 5
- Видео YouTube
- Графическое решение неравенств c одной переменной. Графический способ решения систем уравнений. план-конспект урока по алгебре (9 класс) по теме
- Скачать:
- Предварительный просмотр:
Решение систем линейных неравенств графически
Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C2y, которую необходимо максимизировать.
Ответим на вопрос: какие пары чисел ( x; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by≤ c, ax + by≥ c. Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by
Пусть для определенности a< 0, b>0, c >0. Все точки с абсциссой x0, лежащие выше P (например, точка М), имеют yM>y0, а все точки, лежащие ниже точки P, с абсциссой x0, имеют yN c, образующие полуплоскость, а с другой стороны – точки, для которых ax + by
Знак неравенства в полуплоскости зависит от чисел a, b , c.
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:
- Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
- Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
- Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
- Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.
Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.
Рассмотрим три соответствующих примера.
Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.
Решение:
- рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
- построим прямые, задающиеся этими уравнениями.
Рисунок 2
Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x+ y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y – 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.
Пример 2. Найти графически решения системы неравенств:
Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y– 2 = 0
x | 2 | 0 |
y | 0 | 1 |
y – x – 1 = 0
x | 0 | 2 |
y | 1 | 3 |
y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y– 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y –x– 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых
Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.
Пример 3 . Решить графически систему
Выпишем уравнения, соответствующие неравенствам, и построим прямые.
Рисунок 4
x + y – 1 = 0
x | 0 | 1 |
y | 1 | 0 |
y – x – 1 = 0
x | 0 | –1 |
y | 1 | 0 |
Определим знаки в полуплоскостях. Выберем точку (0; 0):
0 – 0 – 1 ≤ 0, т.е. y – x – 1 ≤ 0 ниже прямой;
0 + 0 – 1 ≤ 0, т.е. x + y – 1 ≤ 0 ниже прямой.
Пересечением двух полуплоскостей является угол с вершиной в точке А(0;1). Эта неограниченная область является решением исходной системы неравенств.
- Решение онлайн
- Видеоинструкция
Источник
Неравенство с одной переменной решение систем графическим способом
Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.
Объединяем уравнения в систему с помощью фигурной скобки:
Графический метод
Недаром ответ записывается так же, как координаты какой-нибудь точки.
Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.
Например, построим графики уравнений из предыдущего примера.
Пример 1
Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):
Для того чтобы графически решить систему уравнений с двумя переменными нужно:
1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);
Разберем это задание на примере.
Решить графически систему линейных уравнений.
Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.
Пример 2
Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:
а) иметь единственное решение;
б) не иметь решений;
в) иметь бесконечное множество решений.
2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.
Пример 3
Графическое решение системы
Пример 4
Решить графическим способом систему уравнений.
Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.
Прямую y=2x-3 провели через точки (0; -3) и (2; 1).
Прямую y=x+1 провели через точки (0; 1) и (2; 3).
Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.
Пример 5
Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.
Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).
Наши прямые пересеклись в точке В(-2; 5).
ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.
Видео YouTube
Источник
Графическое решение неравенств c одной переменной. Графический способ решения систем уравнений.
план-конспект урока по алгебре (9 класс) по теме
Алгебра. Повторение. Подготовка к ГИА. 9 класс.
Скачать:
Вложение | Размер |
---|---|
urok_3_doc.rar | 61 КБ |
Предварительный просмотр:
Графическое решение неравенств c одной переменной.
Графический способ решения систем уравнений.
Повторение. Подготовка к ГИА. 9 класс.
— Создание алгоритма графического решения неравенства с одной переменной.
— Повторение графического способа решения систем уравнений.
— Использование технологии проблемного обучения.
- Организационный момент.
- Графическое решение неравенств c одной переменной.
- Физкультминутка.
- Графический способ решения систем уравнений.
- Домашняя работа.
1. Организационный момент.
2. Графическое решение неравенств c одной переменной .
Постановка проблемы перед ребятами: «Решите неравенство ».
Создание алгоритма графического решения неравенства с одной переменной.
Способ решения неравенств графически применяют для решения «не решающихся» неравенств. Для этого, как и при графическом решении уравнений надо:
1) левую часть неравенства обозначить ; правую — ;
2) постройте графики этих функции в одной системе координат;
3) найти точки пересечения графиков и соответствующие им точки оси абсцисс;
В нашем примере: = и = . Выполним построение графиков функций f ( x) = и с учетом ОДЗ второй функции ( x 0).
Ответ: 0 x 1 и x > 3,3.
4. Графический способ решения систем уравнений .
Для решения системы уравнений этим способом надо:
- каждое уравнение записать в виде формулы функции ( у выразить через х);
- построить графики полученных функций;
- найти точки пересечения графиков функций;
- найти решение системы уравнений (координаты точек пересечения графиков функций).
Замечание . В общем случае ответ надо давать приблизительно ; только если при построении графиков какая-то точка была рассчитана дважды, в ответ можно взять точные значения её координат (в таблицах такую точку обычно обводят).
Решим системы уравнений:
Ответ: х 1 -1,7, у 1 -4,7; Ответ: .
5. Домашняя работа.
Домашнее задание по учебнику №523 (е), №524 (в), № 554 (по желанию).
Источник