Неравенство основные способы доказательства

Доказательство неравенств

Как доказать неравенство? Рассмотрим некоторые способы доказательства неравенств.

1) Число a больше числа b, если разность a-b — положительное число:

a>b, если a-b>0.

2) Число a меньше числа b, если разность a-b — отрицательное число:

a 0 или a=b (то есть a-b≥0).

4)a≤b, если a-b

Сводится к оценке разности левой и правой частей неравенства и сравнение её с нулём.

1) Доказать неравенство: (a+9)(a-2)

Оценим разность левой и правой частей неравенства:

Оцениваем разность левой и правой частей неравенства:

(3x-5)²≥0 при любом значении переменной x.

Следовательно, (3x-5)²+23>0 при любом x.

Значит, неравенство 9x²+48>30x выполняется при любом действительном значении x.

Что и требовалось доказать.

3) Доказать неравенство: x²+y²+16x-20y+190>0.

(x+8)²≥0 при любом значении x,

(y-10)²≥0 при любом значении y,

Следовательно, (x+8)²+(y-10)²+26>0 при любых действительных значениях переменных x и y.

А это значит, что x²+y²+16x-20y+190>0.

Что и требовалось доказать.

II. Доказательство неравенств методом «от противного».

Высказываем предположение, что доказываемое неравенство неверно, и приходим к противоречию.

Предположим, что неравенство, которое нам нужно доказать, неверно. Тогда

Раскрываем скобки и упрощаем:

Поскольку (a1b2-a1b1)²≥0 при любых действительных значениях переменных, то -(a1b2-a1b1)²≤0. Пришли к противоречию. Значит, наше предположение было неверно. Следовательно,

Что и требовалось доказать.

III. Доказательство неравенств с помощью геометрической интерпретации.

Таким способом, например, можно доказать неравенство о среднем арифметическом и среднем геометрическом (частный случай неравенства Коши).

IV. Доказательство неравенств с использованием очевидных неравенств.

Доказать неравенство: a²+b²+c²≥ab+bc+ac.

Так при любых действительных значениях переменных (a-b)²≥0, (b-c)²≥0 и (a-c)²≥0, то очевидно, что (a-b)²+(b-c)²+(a-c)²≥0.

Раскрываем скобки по формуле квадрата разности и упрощаем:

Осталось перенести три слагаемые в правую часть:

Что и требовалось доказать.

V. Доказательство неравенств с помощью ранее доказанных неравенств.

Основные неравенства, на которые опираются при доказательстве других неравенств:

При a1= a2= …= an неравенство превращается в равенство.

  • Сумма положительных взаимно-обратных чисел не меньше двух:

Применяется также аналог неравенства для отрицательных взаимно-обратных чисел:

при x

Равенство достигается лишь в случае, когда числа xi и yi пропорциональны, то есть существует число k такое, что для любого i=1,2,…,n выполняется равенство xi=kyi.

где x>-1, n — натуральное число.

Равенство достигается лишь при x=0 и n=1.

  • Обобщённое неравенство Бернулли

Если x>-1, n — действительное число:

При 0

В обоих случаях равенство возможно лишь при x=0.

    Модуль суммы не превосходит суммы модулей

Равенство достигается, если a и b имеют одинаковые знаки (a≥0 и b≤0 либо a≤0, b≤0).

  • Модуль разности больше либо равен модуля разности модулей

1) Доказать неравенство при x>0, a>0, b>0, c>0:

Используем неравенство Коши о среднем арифметическом и среднем геометрическом

для каждого из множителей:

Так как по условию x>0, a>0, b>0, c>0, то x+a>0, x+b>0, x+c>0 и

0,2\sqrt > 0,2\sqrt > 0. \]» title=»Rendered by QuickLaTeX.com»/>

Что и требовалось доказать.

2) Доказать неравенство:

Таким образом, для доказательства нашего неравенства надо показать, что

разделим обе части неравенства на 4 в двадцатой степени (при делении на положительное число знак неравенства не изменяется):

Применим неравенство Бернулли:

Так как в неравенстве

правая часть больше либо равна 6, это равенство верно. Следовательно,

Что и требовалось доказать.

Помимо перечисленных, существуют другие способы доказательства неравенств (метод математической индукции и т.д.).

Умение доказывать неравенства применяется во многих разделах алгебры (например, метод оценки решения уравнений сводится к доказательству неравенств).

Источник

math4school.ru

Доказательство неравенств

Немного теории

Редкая олимпиада обходится без задач, в которых требуется доказать некоторое неравенство. Алгебраические неравенства доказываются с помощью различных методов, которые основываются на равносильных преобразованиях и свойствах числовых неравенств:

1) если a – b > 0, то a > b; если a – b

2) если a > b, то b a;

Напомним некоторые опорные неравенства, которые часто используются для доказательства других неравенств:

2) aх 2 + bx + c > 0, при а > 0, b 2 – 4ac

3) x + 1 /x > 2, при х > 0, и x + 1 /x –2, при х

4) |a + b| |a| + |b|, |a – b| > |a| – |b|;

5) если a > b > 0, то 1 /a 1 /b;

6) если a > b > 0 и х > 0, то a x > b x , в частности, для натурального n > 2

a 2 > b 2 и n √ a > n √ b ;

7) если a > b > 0 и х x x ;

8) если х > 0, то sin x

Многие задачи олимпиадного уровня, и это не только неравенства, эффективно решаются с помощью некоторых специальных неравенств, с которыми учащиеся школы часто не бывают знакомы. К ним, прежде всего, следует отнести:

  • неравенство между средним арифметическим и средним геометрическим положительных чисел (неравенство Коши):
a + b + c + . . . + z n √ a · b · c · . . . · z ;
n
  • неравенство Бернулли:

(1 + α) n ≥ 1 + nα, где α > -1, n – натуральное число;

  • неравенство Коши – Буняковского:

К наиболее «популярным» методам доказательства неравенств можно отнести:

  • доказательство неравенств на основе определения;
  • метод выделения квадратов;
  • метод последовательных оценок;
  • метод математической индукции;
  • использование специальных и классических неравенств;
  • использование элементов математического анализа;
  • использование геометрических соображений;
  • идея усиления и др.

Задачи с решениями

1. Доказать неравенство:

а) a 2 + b 2 + c 2 + 3 > 2 · (a + b + c);

б) a 2 + b 2 + 1 > ab + a + b;

в) x 5 + y 5 – x 4 y – x 4 y > 0 при x > 0, y > 0.

a 2 + b 2 + c 2 + 1 + 1 + 1 – 2a – 2b – 2c = (a – 1) 2 + (b – 1) 2 + (c – 1) 2 > 0,

б) Доказываемое неравенство после умножения обеих частей на 2 принимает вид

2a 2 + 2b 2 + 2 > 2ab + 2a + 2b,

(a 2 – 2ab + b 2 ) + (a 2 – 2a + 1) + (b 2 – 2b +1) > 0,

(a – b) 2 + (a – 1) 2 + (b – 1) 2 > 0,

что очевидно. Равенство имеет место лишь при a = b = 1.

x 5 + y 5 – x 4 y – x 4 y = x 5 – x 4 y – (x 4 y – y 5 ) = x 4 (x – y) – y 4 (x – y) =

= (x – y) ( x 4 – y 4 ) = (x – y) (x – y) (x + y) (x 2 + y 2 ) = (x – y) 2 (x + y) (x 2 + y 2 ) > 0.

2. Доказать неравенство:

а) a + b > 2 при a > 0, b > 0;
b a
б) Р + Р + Р > 9, где a, b, c – стороны и P – периметр треугольника;
a b c

в) ab(a + b – 2c) + bc(b + c – 2a) + ac(a + c – 2b) > 0, где a > 0, b > 0, c > 0.

a + b – 2 = a 2 + b 2 – 2ab = (a – b) 2 > 0.
b a ab ab

б ) Доказательство данного неравенства элементарно следует из следующей оценки:

b + c + a + c + a + b =
a b c
= b + c + a + c + a + b =
a a b b c c
= ( b + a ) + ( c + a ) + ( c + b ) > 6,
a b a c b c

Равенство достигается для равностороннего треугольника.

ab(a + b – 2c) + bc(b + c – 2a) + ac(a + c – 2b) =

= abc ( a + b – 2 + b + c – 2 + a + c – 2 ) =
c c a a b b
= abc ( ( a + b – 2 ) + ( a + c – 2 ) + ( b + c – 2 ) ) > 0,
b a c a c b

так как сумма двух положительных взаимно обратных чисел больше или равна 2.

3. Доказать, что если a + b = 1, то имеет место неравенство a 8 + b 8 > 1 /128.

Из условия, что a + b = 1, следует, что

a 2 + 2ab + b 2 = 1.

Сложим это равенство с очевидным неравенством

a 2 – 2ab + b 2 > 0.

2a 2 + 2b 2 > 1, или 4a 4 + 8a 2 b 2 + 4b 2 > 1.

Сложив это неравенство с очевидным неравенством

4a 4 – 8a 2 b 2 + 4b 2 > 0,

8a 4 + 8b 4 > 1, откуда 64a 8 + 128a 4 b 4 + 64b 4 > 1.

Сложив это неравенство с очевидным неравенством

64a 8 – 128a 4 b 4 + 64b 4 > 0,

128a 8 + 128 b 8 > 1 или a 8 + b 8 > 1 /128.

4. Что больше е е · π π или е 2 π ?

Рассмотрим функцию f(x) = x – π · ln x . Поскольку f’(x) = 1 – π / х , и слева от точки х = π f’(x) f’(x) > 0, то f(x) имеет наименьшее значение в точке х = π . Таким образом f(е) > f(π) , то есть

е – π · ln е = е – π > π – π · ln π

Отсюда получаем, что

lg (n + 1) > lg 1 + lg 2 + . . . + lg n .
n

Решение

Используя свойства логарифмов, нетрудно свести данное неравенство к равносильному неравенству:

где n! = 1 · 2 · 3 · . . . · n (n-факториал). Кроме того имеет место система очевидных неравенств:

после почленного умножения которых, непосредственно получаем, что (n + 1) n > n!.

6. Доказать, что 2013 2015 · 2015 2013 2 ·2014 .

2013 2015 · 2015 2013 = 2013 2 · 2013 2013 · 2015 2013 =

= 2013 2 · (2014 – 1) 2013 · (2014 + 1) 2013 2 · (2014 2 – 1) 2013

2 · (2014 2 ) 2013 = 2014 2 + 2·2013 = 2014 2·2014 .

Очевидно, так же можно получить общее утверждение: для любого натурального n выполняется неравенство

(n – 1) n +1 (n + 1) n –1 2n .

7. Докажите, что для любого натурального числа n выполняется неравенство:

1 + 1 + 1 + . . . + 1 2n – 1 .
1! 2! 3! n! n

Решение

Оценим левую часть неравенства:

1 + 1 + 1 + . . . + 1 =
1! 2! 3! n!
= 1 + 1 + 1 + 1 + . . . + 1
1 · 2 1 · 2 · 3 1 · 2 · 3 · 4 1 · 2 · 3 · . . . · n
1 + 1 + 1 + 1 + . . . + 1 =
1 · 2 2 · 3 3 · 4 (n – 1) · n
= 1 + ( 1 – 1 ) + ( 1 1 ) + ( 1 1 ) + . . . + ( 1 1 ) = 2 – 1 ,
2 2 3 3 4 n – 1 n n

что и требовалось доказать.

8. Пусть а1 2 , а2 2 , а3 2 , . . . , аn 2 – квадраты n различных натуральных чисел. Докажите, что

( 1 – 1 ) ( 1 1 ) ( 1 1 ) . . . ( 1 1 ) > 1 .
а1 2 а2 2 а3 2 аn 2 2

Решение

Пусть наибольшее из этих чисел равно m. Тогда

( 1 – 1 ) ( 1 1 ) ( 1 1 ) . . . ( 1 1 ) >
а1 2 а2 2 а3 2 аn 2
> ( 1 – 1 ) ( 1 1 ) ( 1 1 ) . . . ( 1 1 ) ,
2 2 3 2 4 2 m 2

так как в правую часть добавлены множители, меньшие 1. Вычислим правую часть, разложив каждую скобку на множители:

(1 · 3)(2 · 4)(3 · 5) . . . (m – 1)(m + 1) =
2 2 · 3 2 · 4 2 · . . . · m 2
= 2 · 3 2 · 4 2 · . . . · (m – 1) 2 · (m + 1) = m + 1 = 1 + 1 > 1 .
2 2 · 3 2 · 4 2 · . . . · m 2 2m 2 2m 2

9. Даны положительные числа a1, a2, . . . , an. Известно, что a1 + a2 + . . . + an ≤ 1 /2 . Докажите, что

(1 + a 1 )(1 + a 2 ) . . . (1 + a n )

Раскрыв в левой части скобки, получим сумму

Сумма чисел во второй скобке не превосходит (a1 + . . . + an) 2 , сумма в третьей скобке не превосходит (a1 + . . . + an) 3 , и так далее. Значит, все произведение не превосходит

Методом математической индукции докажем, что для всех натуральных n верно неравенство:

При n = 1 имеем: 1 + a 1 1 .

Пусть при n = k имеет место: (1 + a 1 ) . . . (1 + a k ) 1 + . . . + a k ).

Рассмотрим случай n = k +1: (1 + a 1 ) . . . (1 + a k )(1 + a k +1 )

( 1 + 2(a 1 + . . . + a k ) )( 1 + a k +1 ) ≤ 1 + 2(a 1 + . . . + a k ) + a k +1 (1 + 2 · 1 /2) =

В силу принципа математической индукции неравенство доказано.

10. Доказать неравенство Бернулли:

где α > -1, n – натуральное число.

Воспользуемся методом математической индукции.

При n = 1 получаем истинное неравенство:

Предположим, что имеет место неравенство:

Покажем, что тогда имеет место и

(1 + α) n + 1 ≥ 1 + (n + 1)α.

Действительно, поскольку α > –1 влечет α + 1 > 0, то умножая обе части неравенства

на (a + 1), получим

(1 + α) n (1 + α) ≥ (1 + nα)(1 + α)

(1 + α) n + 1 ≥ 1 + (n + 1)α + nα 2

Поскольку nα 2 ≥ 0, следовательно,

(1 + α) n + 1 ≥ 1 + (n + 1)α + nα 2 ≥ 1 + (n + 1)α.

Таким образом, согласно принципу математической индукции, неравенство Бернулли справедливо.

Задачи без решений

1. Доказать неравенство для положительных значений переменных

a 2 b 2 + b 2 c 2 + a 2 c 2 ≥ abc(a + b + c).

2. Доказать, что при любом a имеет место неравенство

3(1 + a 2 + a 4 ) ≥ (1 + a + a 2 ) 2 .

3. Доказать, что многочлен x 12 – x 9 + x 4 – x + 1 при всех значениях x положителен.

5. Пусть a, b ,c – положительные числа. Докажите, что

Источник

Читайте также:  May island 7 days secret healing pumpkin sleeping pack способ применения
Оцените статью
Разные способы