Необычные способы решения линейных уравнений

Нестандартные способы решения систем линейных уравнений

Рецензия

на проектно-исследовательскую работу по математике ученика 8 класса «А» МБОУ «Гимназии №20» Кислякова И. на тему: «Нестандартные способы решения систем линейных уравнений».

Руководитель: учитель математики Родионова Н.Е.

Актуальность данной темы подтверждается множеством причин. Рассматриваемые в научно-исследовательской работе вопросы актуальны в связи с проведением государственной итоговой аттестации и единого государственного экзамена по математике, в котором всегда встречается решение систем уравнений. Кроме того, данная тема изучается на первом курсе университета при изучении курса высшей математики. Что будет способствовать лучшему пониманию и усвоению материала. Также умение решать системы уравнений методом Крамера, например, дает возможность быстрее решать системы уравнений с параметром. Данная тема представляет собой практический интерес, так как ее можно реализовать с помощью компьютерной программы Excel, что особенно вызывает заинтересованность у учащихся.

Проектно-исследовательская работа состоит из двух глав, в свою очередь делящихся на 5 и 4 параграфа каждая, а также введения, заключения, списка использованной литературы и приложения. Оформление проектно-исследовательской работы соответствует принятым стандартам.

Во введении обоснована актуальность исследования, цели и задачи работы, теоретическая и практическая значимость работы. Цели и задачи проектно-исследовательской работы сформулированы грамотно, соответствуют заявленной теме.

В первой главе работы рассматриваются теоретические вопросы. Даны основные понятия и определения, которыми учащийся пользуется при изучении темы. На высоком уровне изложен материал по теме исследовательской работы. Видно, что Иван проанализировал большое количество учебников по заданной тематике, провел грамотный анализ ресурсов, использовал только достоверные данные. Перед учеником стояла сложная задача написания теоретической части работы, так как успех понимания материала зависел во многом от трудолюбия ребенка и умения «правильно» воспринимать математический язык. Всю теоретическую часть ученик писал самостоятельно, на основе собственных знаний и исследований.

Вторая глава проектно-исследовательской работы — практическая. Она содержит большое количество разобранных примеров на каждый метод решения систем линейных алгебраических уравнений, причем, которые имеют различное количество решений. Иван воплотил идею реализации решения систем линейных алгебраических уравнений в Excel, им разработано программное приложение, в котором он реализует все методы. Ученик самостоятельно разобрался с программой, смог выстроить алгоритм решения в электронной среде. Особое внимание практической части работы заслуживает умение применить способы решения систем линейных алгебраических уравнений для задач повышенной сложности: решений систем уравнений с параметром, сложных экономических задач.

В результате написания работы ученик грамотно изложил результаты исследования, на основе проделанного исследования, он сделал выводы о достоинствах и недостатках каждого из методов.

Предложенный в заключении задачник будет полезен учащимся, которые самостоятельно изучали данную тему и хотят выяснить усвоили ли они этот материал.

Работа построена последовательно, следование глав — логично. Работа оформлена в соответствии с требованиями к научно-исследовательской работе.

Работа заслуживает внимания и высокой оценки со стороны экспертной комиссии.

Рецензент: учитель математики Родионова Н.Е.

Скачать:

Вложение Размер
prezentatsia_sistemy.pptx 832.96 КБ
Предварительный просмотр:

Подписи к слайдам:

Проектно–исследовательская работа Нестандартные способы решения систем линейных уравнений Выполнена учеником 8 класса «А» МБОУ «Гимназия № 20» Кисляковым Иваном Сергеевичем Руководитель учитель математики Родионова Наталья Евгеньевна Донской, 2012

Целью работы является изучение методов решения систем линейных уравнений и построение компьютерной модели этих решений систем линейных уравнений с помощью приложения MS Excel 2010. Для достижения цели поставлены следующие задачи : 1. изучить литературу по данной теме; 2. охарактеризовать каждый метод в отдельности; 3. применить изученные методы на практике; 4. на основе алгоритмов изученных методов создать компьютерные модели решения системы линейных уравнений в MS Excel 2010; 5. провести сравнительный анализ методов, выявить их достоинства и недостатки.

Метод Крамера Метод Крамера — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.

Рассмотрим стандартную линейную систему трех уравнений Введем определитель системы, составленный из коэффициентов при неизвестных Введём дополнительные определители Δ Δ1 Δ2 Δ3 Число решений 0 0 0 0 Бесконечное множество решений 0 ≠0 ≠0 ≠0 Нет решений ≠0 любое любое любое Единственное решение

Найти решение системы трех уравнений с тремя неизвестными методом Крамера : x = ; y = Найти решение системы трех уравнений с тремя неизвестными методом Крамера : Решение: 1. Составим определитель системы 2. Вычислим дополнительные определители 3 . Найдем решение уравнения:

Метод Гаусса Метод Гаусса — классический метод решения системы линейных алгебраических уравнений. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого вида , из которого последовательно, начиная с последних переменных , находятся все остальные переменные.

Пусть исходная система выглядит следующим образом. , где Алгоритм решения методом Гаусса заключается в следующем: 1) На первом этапе (прямой ход) необходимо записать расширенную матрицу системы. 2 ) На втором этапе осуществляется так называемый обратный ход снизу вверх.

Найти решение системы трех уравнений с тремя неизвестными методом Гаусса: Решение: 1) Прямой ход 2) Обратный ход Ответ:

Пусть дана система линейных уравнений с n неизвестными: Найдем определитель матрицы системы det A. Находим обратную матрицу A — 1 к матрице системы. , где Матричный метод X = A − 1 B

Решить матричным способом: Решение: Найдем определитель: Запишем обратную матрицу: Ответ:

Исследовать при каких значениях k значение переменной х больше, чем значение переменной у . Решение: Решим систему методом сложения: Решим систему методом Крамера : 4k+15>6-3k , k>- Ответ: при k>-

(ЕГЭ – 2005, С-2): При каких значениях параметра а уравнение имеет ровно одно решение? Решение: Ответ: При уравнение имеет ровно одно решение.

Реализация методов решения систем линейных алгебраических уравнений в MS Excel 2010

Название метода Метод Крамера Метод Гаусса Матричный метод Достоинства формулы Крамера легко запоминаются; пригоден для решения систем линейных уравнений 2 и 3 порядков; позволяет решать систему линейных уравнений в общем виде; позволяет избежать лишних записей. применим к любой системе линейных уравнений; менее трудоемкий; позволяет однозначно установить, совместна система или нет. не вызывает затруднений при работе на компьютере. Недостатки высокая ресурсоемкость вычислений определителей; для систем уравнений порядка выше 3 затруднен подсчет определителей; если система имеет бесконечное число решений, чтобы записать общий вид ответа нужно обратиться к Гаусса не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимы для написания программы на компьютере. высокая ресурсоемкость вычисления обратной матрицы; если система имеет бесконечное число решений, чтобы записать общий вид ответа нужно обратиться к методу Гаусса.

«Мне приходится делить своё время между политикой и уравнениями. Однако уравнения по-моему, гораздо важнее, потому что политика существует только для данного момента, а уравнения будут существовать вечно. А. Эйнштейн

Источник

Необычные способы решения линейных уравнений

Различные способы решения уравнений и систем линейных уравнений

Автор работы награжден дипломом победителя III степени

Введение

Уже третий год я занимаюсь очень интересным делом – исследовательской работой. В этот раз я выбрала не менее познавательную тему, чем предыдущие. «Различные способы решения уравнений и систем линейных уравнений». В прошлом году у меня была похожая тема о нестандартных задачах, с которыми мы так часто встречаемся на олимпиадах и ,к сожалению, теряемся. Она дала мне большой опыт и много новых знаний. Такой же результат у меня и с новой работой этого года.

Я решила остановиться именно на уравнениях, потому что они занимают ведущее место в школьном курсе алгебры. На их изучение отводится времени больше, чем на любую другую тему. Сила теории уравнений в том, что она не только имеет теоритическое значение, но и служит целям, с которыми мы встречаемся на практике. Большинство задач о количественных отношениях сводится к решению различных видов уравнений. Изучая способы их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т.д.) Но конечно главное в изучении уравнений, как и в любых других темах, – это самостоятельная и очень усердная работа.

Главная цель – поиск наиболее оптимальных способов решения систем уравнений, которые помогают нам углубляться в тему, закреплять, расширять наши теоритические знания, но приступая к ней, понадобится немало общематематических представлений, понятий, умений.

История уравнений

В далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, еще не было ни монет, ни кошельков. Но были кучи, а также горшки, корзины, которые успешно заменяли тайники-хранилища, вмещающих неизвестное количество предметов. Они использовались даже в древних задачах: «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы очень даже успешно справлялись с такими задачами. Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном источнике не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений. Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь- мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Сама алгебра как искусство решать уравнения зародилась очень давно в связи с потребностью практики, в результате поиска решениий однотипных задач. Самые ранние дошедшие до нас рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приёмы решения линейных уравнений.

Под влиянием исследований молодого французского математика Э.Галуа (1811-1832) в дальнейшем развитии, особенно в двадцатом веке, алгебра все более определялась как наука об общих алгебраических операциях (действиях). Значение современной алгебры выходит далеко за приделы учения об уравнениях. Алгебра широко применяется в любом разделе математики, в естествознании и техники, при этом неразрывно связана с уравнениями.

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Оказывается, квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя совершенную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и например, полные квадратные уравнения. Они появились у вавилонян в связи с землемерной практикой.

Правило решения уравнений, изложено в вавилонских текстах и совпадает по существу с современным, однако не известно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без способов их решения.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Зачатки алгебраического мышления находят и в египетских папирусах.

Например в папирусе Ахмеса (первый математик) есть специальный раздел «Вычисление кучи». Так же как и в Вавилоне под словом «куча» подразумевается неизвестная величина.

Квадратные уравнения у Аль-Хорезми.

В алгебраическом трактате Аль-Хорезми (учёного математика азиатского происхождения) дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. a= bx.

2) «Квадраты равны числу», т. е. a = c.

3) «Корни равны числу», т. е. ax = c.

4) «Квадраты и числа равны корням», т. е. a + c = bx.

5) «Квадраты и корни равны числу», т. е. a + bx = c.

6) «Корни и числа равны квадратам», т. е. bx + c = a.

«Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения + 21 =10x).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними21, останется 4. Извлеки корень из 4, получишь 2. отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

СВОЙСТВА КОЭФФИЦИЕНТОВ КВАДРАТНОГО УРАВНЕНИЯ.

Если а+ b+c= 0, то =1, =.

Пример. Рассмотрим уравнение +4х – 5= 0.

а+b+c= 1+4+(-5)= 0, следовательно, =1, = =-5. Значит корнями этого уравнения являются 1 и –5.

Выполним проверку через дискриминант:

D= – 4ас= 16 – 4∙1∙(–5)= 36.

Если b= а+c, то = –1, = .

Пример. Рассмотрим уравнение 2+8х +6 = 0.

а+c=2+6=8, значит = –1, == -3. Значит корнями этого уравнения являются –1 и –3. Проверим это с помощью нахождения дискриминанта:

D= – 4ас=64 – 4∙2∙6= 16.

СПОСОБ ПЕРЕБРОСКИ.

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат. Если а±b+c≠0, то используется прием переброски:

Далее легко найти корни по теореме Виета:

Но корни уравнения необходимо поделить на 2, тогда корни равны 5 и 0,5.

Иногда встречаются квадратные уравнения с большими коэффициентами. В этом случае полезно использовать их закономерность:

1) Если в уравнении a+ bx + c = 0 коэффициент b равен (+1), а коэффициент с численно равен коэффициенту а, т.е. a + (+1)∙ х+ а= 0, то его корни равны: = –а; = — – .

Пример. Рассмотрим уравнение 6 +37х +6 = 0.

37=+1, следовательно = -6; = — –.

2)Если в уравнении a – bx + c = 0 коэффициент b равен (+ 1),а коэффициент с численно равен коэффициенту а, т.е. a – (+1)∙ х+ а= 0, то его корни равны = а; = –.

Пример. Рассмотрим уравнение 15 –226х +15 = 0.

+1=226 и 15=15,значит = 15; = — –.

Если в уравнении a+ bx + c = 0 коэффициент b равен ( – 1), а коэффициент с численно равен коэффициенту а, т.е. a – (-1)∙ х- а= 0, то его корни равны = –а; =–.

Пример. Рассмотрим уравнение 17 +288х – 17 = 0.

+1=228, а=с=17, значит = -17; = .

Если в квадратном уравнении a+ bx + c = 0 коэффициент b равен ( – 1), а коэффициент с численно равен коэффициенту а, имея вид a + (-1)∙ х- а= 0, то его корни равны = а; = .

Пример. Рассмотрим уравнение 10 –99 х – 10 = 0.

-1=99 и коэффициент а=с, следовательно, =10; = -0,2

Кубическое уравнение.

Кубическое уравнение – это уравнение третьей степени вида:

Известные формулы Кардано для решения уравнений этого типа очень сложны и почти не применяются на практике. Поэтому я рекомендую другой путь решения уравнений третьей степени.

1) Сначала путём подбора надо найти один из корней уравнения. Кубические уравнения всегда имеют по крайней мере один корень, причем целый корень кубического уравнения с целыми коэффициентами является делителем свободного члена d. Коэффициенты этих уравнений обычно подобраны так, что искомый корень лежит среди небольших целых чисел: 0, ± 1, ± 2, ± 3. Поэтому мы будем искать корень среди этих чисел и проверять его путём подстановки в уравнение. Вероятность успешного нахождения корня при таком подходе очень высока. Предположим, что этот корень x1 .

2) Второй этап решения – это деление многочлена a + b + cx + d на двучлен (x –x1). Согласно теореме Безу (Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами, при этом если старший коэффициент равен 1, то все рациональные корни — целые) это деление без остатка возможно, и мы получим в результате многочлен второй степени, который надо приравнять к нулю. Решая полученное квадратное уравнение, мы найдём оставшиеся два корня, если они есть.

Пример . Решить уравнение: – 3 – 13x + 15 = 0 .

Найдём первый корень подбором чисел: 0, ± 1, ± 2, ± 3 и подставим в уравнение. В результате находим, =1.

Тогда делим левую часть этого уравнения на двучлен x – 1, и получаем:

Теперь, решим квадратное уравнение: – 2x – 15 = 0

Задачи на уравнения:

Числитель дроби на 1 меньше знаменателя. Если увеличить числитель дроби на 5, а знаменатель на 3, то дробь увеличится на . Найти дробь.

Решение: Пусть х- числитель дроби, а (х+1) – знаменатель, тогда дробь имеет вид:

Составим и решим уравнение:

2х(х+4) + (х+1)(х+4) – 2(х+5)(х+1) = 0

2+ 8х + + 4х + х + 4 – (2х +10)(х+1) = 0

2+ 8х + + 4х + х + 4 – 2 – 2х – 10х – 10 = 0

Следовательно: знаменатель равен х+1= 2+1=3, а числитель равен 2.

Задача из ОГЭ на составление уравнений:

Первый велосипедист выехал из посёлка по шоссе со скоростью 21 км/ч. Через час после него со скоростью 15 км/ч из того же посёлка в том же направлении выехал второй велосипедист, а ещё через час – третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 9 часов после этого догнал первого.

Решение: Пусть х км/ч – скорость третьего велосипедиста.

Составим и решим уравнение:

— =9, где х-21 и х-15 – скорости сближения.

Избавимся от знаменателя:

х-15(2*21) – 15(х-21) = 9(х-15)(х-21)

= = = 14-этот корень не подходит условию

Решение систем линейных уравнений.

Для того, чтобы решить систему уравнений, состоящую из двух или более уравнений, я рассмотрела несколько методов.

1)Составим первоначальную матрицу из коэффициентов при неизвестных и обозначим её :

1 2 1 2) Заменим первый столбец матрицы числами после знака равно:

3) Сделаем тоже самое со вторым и третьим столбцом:

4) Найдём определитель (дискриминант) для каждой матрицы:

x= 0, y=22, z=-33, = -11

5)Далее найдём корни по формулам:

Метод Гаусса(метод треугольника)

Оставляем первое уравнение без изменений и умножим его на то число, чтобы при сложении х уничтожился во втором. Т.е. второе уравнение после сложения уже записываем без х.

Далее, умножаем и первое, и второе уравнение на -2, чтобы и в третьем уравнении избавиться от х.

И наконец умножаем третье уравнение на -7, тем самым избавляясь при сложении от у.

х+2у+ z=-1 И методом подстановки находим все корни : z=3

-7у-4z=2 -7у=2+12, у= -2

Метод Гаусса(метод прямоугольников)

Составим матрицу и приведём её к единичной:

1 2 3 5 1 0 0 х

4 5 6 8 0 1 0 у

7 8 0 2 0 0 1 z

Первую троку оставляем без изменений; во второй строке первый коэффициент равен 0, а остальные два найдём с помощью метода прямоугольников:

Вместе с разрешающим элементом(1 в первой строке) и коэффициентом, который нам надо найти, составляем прямоугольник и вычитаем его диагонали: 1*5-2*4=-3.

Затем, составляем прямоугольник со вторым коэффициентом во второй строке(а первый равен 0) и так со всеми оставшимся числами.

1 2 3 5 1 2 3 5

0 -3 -6 -12 4 5 6 8

0 -6 -21 -33 7 8 0 2

Для того, чтобы упростить вычисления, сократим последние 2 строки на -3 и продолжим вычисление:

Теперь разрешающим элементов является 1 во второй строке.

1 2 3 5 1 0 -1 -3 Сократим и здесь третью строку на

0 1 2 4 0 1 2 4 (-3)

0 2 7 11 0 0 3 3

Получим новую матрицу с разрешающим элементом 1 в третьей строке:

1 0 -1 -3 1 0 0 -2

0 1 2 4 0 1 0 2

0 0 1 1 0 0 1 1

Крайние числа в последней матрице и есть корни уравнения:

Заключение

Я исследовала различные методы для решения уравнений и систем линейных уравнений, чтобы развивать потребность у старшеклассников в нахождении рациональных способов их решения.

Обобщая нестандартные методы решения систем линейных уравнений, работа может быть рекомендована как учащимся школы, так и студентам первого курса.

Я постараюсь продолжить работу над этой темой дальше, чтобы находить и совершенствовать навыки интересных, нестандартных и оптимальных способов решения.

Список использованной литературы:

5) А. Н. Бекаревич «Уравнения в школьном курсе математики» Минск. 1968 г., 99 стр.

6) В. С. Гиренович «Математика в школе» № 3 Виды самостоятельных работ. 1998 г.

Источник

Читайте также:  График какого способа глушения скважины изображен
Оцените статью
Разные способы