Фракционный состав нефти и нефтепродуктов
Фракции нефти определяются лабораторным путем, поскольку продукт содержит органические вещества, обладающие разным давлением насыщенных паров. О температуре кипения, как таковой, говорить нельзя, но вычисляется начальная точка и предел. Определенный интервальный промежуток кипения нефти +28-540°С. По нему определяется фракционный состав нефти. Он регламентирован стандартом ГОСТ 2177-99. За начало кипения принята температура, при которой появляется конденсат. Завершением кипения считается момент прекращения испарения паров. Лабораторные испытания проходят на перегонных аппаратах, где фиксируются устойчивые показания и выводится кривая температур кипения методом перегонки. Разделение нефти и нефтепродуктов на фракции до +200°С производится при атмосферном давлении. Остальные в более высоких температурах отбираются под вакуумом, чтобы не произошло разложения.
Методы определения фракционного состава нефтепродуктов
Фракционирование нефти необходимо, чтобы выбрать направления переработки сырьевой базы, узнать точное содержание базовых масел при перегонке нефти. На основании этого классифицируются все свойства фракций.
- Метод A — использование автоматических аппаратов для определения фракционного состава нефти и отдельных псевдокомпонентов. Колбы используются из термостойкого стекла, дно и стенки которых одинаковой толщины.
- Метод B – применение четырехгнездного, или шестигнездного аппарата. Колбы с круглым дном вместимостью 250 см3. Метод применяется только для разгонки темных нефтепродуктов.
Виды и свойства нефтяных фракций
Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.
- Простая перегонка — во время испарения пар конденсирует.
- Дефлегмация — только высококипящие пары выделяют конденсат и возвращаются обратно в общую смесь в виде флегмы. Низкокипящие пары полностью испаряются.
- Ректификация — процесс соединения двух предыдущих видов обработки, когда достигается максимальная концентрация и конденсирование низкокипящих паров.
В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:
- легкие (к этому типу относят бензиновую и петролейную) – выходят при температуре до 140°С при атмосферном давлении;
- средние (сюда относятся: керосиновая, дизельная, лигроиновая) при атмосферном давлении в интервале температур 140-350°С;
- при вакуумной переработке и температурах более 350°С получаются фракции, которые называют тяжелые (Вакуумный газойль, гудрон).
Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).
А теперь подробнее об основных видах нефтяных фракций:
Петролейная фракция
Эфир или масло Шервуда — это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.
Бензиновая фракция
Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.
Лигроиновая фракция
Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.
Керосиновая фракция
Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.
Дизельная фракция
Подвид находит применение в изготовлении дизельного топлива для быстроходных видов транспорта, а также используется как вторичное сырье. В процессе обработки выделяется керосин, используемый для в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта. Преобладание смесей углеводородов нафтена. Для получения топлива, которые не застывает при -60°С, состав проходит карбамидную депарафинизацию. Это перемешивание всех компонентов в течение 1 часа и последующая фильтрация через воронку Бюхнера.
Мазут
Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение — жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид — в котельных предприятий. Флотский — неотъемлемая часть работы судоходного транспорта.
Гудрон
Качество компонентов в процентном соотношении определяется так:
- Парафин, нафтен — 95%.
- Асфальтен — 3%.
- Смолы — 2%.
Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса — продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.
Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.
Источник
Нефть способы переработки фракция
Химический состав нефти. Методы переработки нефти
Автомобильные топлива являются источником тепловой энергии, которая в двигателях внутреннего сгорания преобразуется в механическую. Топлива делятся на жидкие и газообразные. Жидкие топлива подразделяются на бензины и дизельные топлива, а газовые — на сжиженные и сжатые. Основным источником получения жидких и газообразных топлив является нефть.
В настоящее время, когда во всем мире наблюдается рост цен на нефтепродукты, становится острой проблема рационального расходования особенно таких материалов, как топлива и масла.
К эксплуатационным материалам, применяемым на автомобильном транспорте, относятся жидкие и газообразные топлива, смазочные и конструкционно-ремонтные материалы, а также специальные жидкости.
Автомобильный транспорт использует значительную часть производимых продуктов переработки нефти и газа. В себестоимости автомобильных перевозок затраты на топливо и смазочные материалы составляют более 20 % и существенно зависят от уровня эксплуатации автотранспортной техники.
Правильный выбор и рациональное использование эксплуатационных материалов во многом определяют надежность и долговечность техники, затраты на ее обслуживание и ремонт. Ошибка при выборе моторного масла может привести в лучшем случае к сокращению срока службы двигателя, в худшем — к его поломке.
Выбор и правильное применение масла осложняются зачастую тем, что технической документацией на некоторые машины предусматривается большое число марок смазочных материалов. Поэтому унификация их и использование заменителей могут иметь большое значение для упрощения эксплуатации автомобильной техники.
В автомобиле имеется большое число узлов и механизмов, где применяются пластичные смазки, разнообразие которых также предполагает грамотное их использование.
Выбор смазочных материалов более высокого качества, чем требуется, ведет к неоправданному увеличению затрат. Применение же материала с более низкими качествами неизбежно приводит к сокращению сроков службы автомобиля и перерасходу самого материала.
Проблемы использования топлива и смазочных материалов настолько важны, что возникла наука — химмотология, которая изучает свойства, качество и рациональное использование горючих и смазочных материалов в технике, устанавливает требование к горюче-смазочным материалам (ГСМ), что способствует разработке новых сортов, методов испытаний и унификации ГСМ.
В современном автомобиле число деталей, в конструкции которых применяется резина, доходит до 500. Поэтому необходимо обладать знаниями о правильном использовании резинотехнических изделий, особенно дорогостоящих, таких, как автомобильные шины.
Хорошее лакокрасочное покрытие не только придает автомобилю красивый внешний вид, но предохраняет его кузов от воздействия внешней среды и преждевременного разрушения. Постоянное воздействие снега, дождя, соли, а также песка и мелких камней приводит к старению и постепенному разрушению покрытия. Продолжительность службы кузова легкового автомобиля составляет в среднем 6 лет. Грамотная противокоррозионная обработка современными защитными материалами позволяет продлить этот срок до 12 лет и более.
В книге для каждого вида материалов, применяемых при эксплуатации автомобилей, приведены физико-химические свойства и эксплуатационные качества, а также предъявляемые к ним технико-экономические требования.
Эти и другие сведения, которые необходимы специалистам автомобильного транспорта для организации рационального использования материалов, позволяют решать конкретные задачи использования материалов как отечественного, так и зарубежного производства.
1.1.1. Химический состав нефти
Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные твердые углеводороды и смолистые вещества. Главными элементами нефти являются углерод и водород. Содержание углерода колеблется от 83,5 до 87 %, водорода — от 11,5 до 14 %. Также в нефти присутствуют сера, кислород и азот — в сумме не более 3 %.
Основными компонентами нефти являются углеводороды, которые принадлежат к следующим гомологическим рядам:
CnH2n+2 — алканы (насыщенные углеводороды);
CnH2n — нафтены (алициклические углеводороды);
CnH2n-6 — арены (ароматические углеводороды).
Непредельных углеводородов в сырой нефти нет. Кроме углеводородов в нефти присутствуют кислородные, сернистые и азотистые соединения.
Кислородные соединения представлены карбоновыми кислотами, эфирами, фенолами и т. п. Основная их часть сосредоточена в высококипящих фракциях, начиная с керосиновой. Карбоновые кислоты присутствуют в нефти, всех топливах и смазочных материалах; больше всего в нефтепродуктах нафтеновых кислот:
Они представляют собой жидкости, которые могут корродировать металлы.
Сернистые соединения увеличивают расход топлива, оказывают вредное воздействие на окружающую среду. Сернистые соединения, входящие в состав нефти, по фракциям переработки распределены неравномерно. В нефтяных остатках их содержится до 90 %. Сернистые соединения нефти делятся на активные и неактивные. К активным, которые взаимодействуют с металлами при комнатной температуре, относятся элементарная сера, сероводород и меркаптаны.
Неактивные сернистые соединения, к которым относятся сульфиды и дисульфиды, при нормальных условиях не вступают в реакцию с металлами.
В малосернистых нефтях содержание сернистых соединений достигает 0,5 %, а в сернистых до 5 %. После перегонки в бензиновых фракциях содержится до 0,15 % неактивных сернистых соединений, в керосиновых — до 1 %.
Азотистые соединения содержатся в нефти в небольших количествах и концентрируются, главным образом, в тяжелых фракциях. Азотистые соединения делятся на основные и нейтральные. Основные азотистые соединения отделяют обработкой слабой серной кислотой.
Азотистые соединения термически стабильны и не оказывают заметного влияния на эксплуатационные свойства нефтепродуктов. Однако при хранении дизельных топлив они вызывают усиленное смолообразование.
1.1.2. Способы переработки нефти
К основным способам получения топлив из нефти относятся прямая перегонка (дистилляция), термический и каталитический крекинги, гидрокрекинг и каталитический риформинг.
При разнообразии содержащихся углеводородов особенностью нефти является широкий температурный диапазон выкипания. Уже при нагреве до 30 … 40 °С из нефти начинают испарятся наиболее легкие углеводороды. С повышением температуры состав выкипающих углеводородов становится тяжелее. Это позволяет разделить нефть на части или фракции, выкипающие в определенных температурных пределах. Получаемые продукты называются дистиллятами, а сам процесс – прямой перегонкой нефти. Обычно выделяются дистилляты со следующими пределами выкипания:
Прямая перегонка заключается в нагреве нефти при атмосферном давлении и выделении фракций, различающихся температурами кипения. При температуре от 35 до 200 °С отбирают бензиновую фракцию, от 200 до 300 °С — дизельное топливо . Остаток после перегонки — мазут (до 80 %), который поступает в куб дистилляционной колонны, работающей под вакуумом. При этом верхний слой представляет собой соляровый дистиллят (температура кипения 280—300 °С), который является исходным сырьем для крекинг-бензинов и дистилляционных масел: индустриальных, цилиндровых, моторных и т. д.
Термический и каталитический крекинги используют для увеличения выхода легких фракций из нефти. Исходным сырьем служит соляровая фракция, представляющая собой смесь углеводородов с числом атомов углерода от 16 до 20, при нагревании которой до 450—550 °С в присутствии катализатора (алюмосиликат) или без него происходит расщепление углеводородов.
Сырьем для термического крекинга является полугудрон — остаток после недостаточно полного отгона масляных фракций. При этом выход бензина составляет 30—35 %. Термический крекинг сопровождается образованием ненасыщенных углеводородов, поэтому бензины термического крекинга характеризуются низкой химической стабильностью и невысокой детонационной стойкостью. На современных заводах термический крекинг не применяется.
Основным методом получения бензина является каталитический крекинг. Бензины каталитического крекинга содержат около 50 % изоциклических и ароматических углеводородов, а также 20—25 % алициклических. Содержание ненасыщенных углеводородов не превышает 5—9 %. Поэтому эти бензины имеют более высокую детонационную стойкость и химическую стабильность.
Каталитический крекинг позволяет получить бензины с октановым числом до 98 и протекает при температуре 450—550 °С в присутствии водорода с алюмомолибденовым или алюмоплатиновым катализатором при давлении 3 МПа.
Гидрокрекинг происходит при давлении до 20 МПа и температуре 480—500 °С в среде водорода с катализатором, благодаря чему ненасыщенные углеводороды не образуются, и полученный бензин имеет высокую химическую стабильность. Сырьем служит полугудрон.
Для улучшения качества бензина прямой перегонки используют каталитический риформинг, который протекает в присутствии водорода при температуре 460—510 °С и давлении 4 МПа. При этом происходит перестройка молекул, что ведет к образованию ароматических углеводородов (бензола, толуола, ксилолов и др.) из алканов и нефтенов и повышению детонационной стойкости.
Коксование тяжелых фракций процессов крекинга проводится при температуре 550 °С и атмосферном давлении. При этом образуются кокс, газообразные углеводороды и жидкая фракция, из которой извлекается бензин.
Рис 1.1. Схема переработки нефти
Синтезирование побочных газообразных продуктов крекинга и коксования направлено на получение высокооктановых компонентов: изооктана, алкилата, алкилбензола и других нефтепродуктов, которые используются в качестве добавок при получении технических сортов бензина.
Очистка автомобильных топлив является заключительной стадией подготовки базовых продуктов. Их необходимо очистить от избытка сернистых соединений, органических кислот и смолисто-асфальтеновых веществ. Для удаления сернистых соединений применяют метод гидроочистки при температуре до 300—430 °С и давлении 5—7 МПа в присутствии катализатора и водорода. Карбоновые кислоты нейтрализуют щелочью с последующей промывкой водой и сушкой.
Зимние сорта дизельного топлива получают удалением из жидкой фазы растворенные твердые углеводороды. Этот процесс — депарафинизация обеспечивает понижение температуры застывания дизельного топлива.
Схема переработки нефти показана на рис. 1.1.
1. Расскажите о химическом составе нефти.
2. Какое воздействие оказывают сернистые соединения?
3. Назовите основные способы перегонки нефти.
4. Что такое прямая перегонка нефти?
5. Что такое термический и каталитический крекинги?
6. Что такое гидрокрекинг и каталитический риформинг?
Источник