Растворы. Способы выражения концентрации растворов
Материалы портала onx.distant.ru
Растворы. Способы выражения концентрации растворов
Способы выражения концентрации растворов
Существуют различные способы выражения концентрации растворов.
Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:
Массовый процент представляет собой массовую долю, умноженную на 100:
ω(Х) = m(Х)/m · 100% (0%
где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.
Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.
Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:
Мольный процент представляет мольную долю, умноженную на 100:
Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:
φ(Х) = V(Х)/V (0
Объёмный процент представляет собой объёмную долю, умноженную на 100.
Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:
Cм(Х) = n(Х)/V (6)
Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.
Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:
Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.
Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см 3 раствора:
T(Х) = m(Х)/V (8)
где m(X) – масса растворённого вещества X, V – объём раствора в мл.
Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:
μ(Х) = n(Х)/mр-ля (9)
где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.
Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.
Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:
Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.
Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:
Результаты расчётов приведены в табл. 2.
Таблица 1. К определению молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2 M Na2SO4 | ? | 6 н FeCl3 | ? |
1,5 M Fe2(SO4)3 | ? | 0,1 н Ва(ОН)2 | ? | |
Реакции окисления-восстановления | 0,05 М KMnO4 в кислой среде | ? | 0,03 М KMnO4 в нейтральной среде | ? |
Значения молярности и нормальности растворов
Тип химического превращения | См | Сн | Сн | См |
Реакции обмена | 0,2M Ma2SO4 | 0,4н | 6н FeCl3 | 2М |
1,5M Fe2(SO4)3 | 9н | 0,1н Ва(ОН)2 | 0,05М | |
Реакции окисления-восстановления | 0,05М KMnO4 в кислой среде | 0,25н | 0,03М KMnO4 в нейтральной среде | 0,01М |
Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:
Примеры решения задач
Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см 3 .
Решение.
Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.
Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.
Молярность раствора См = 521,2/98 = 5,32 М.
Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.
Титр раствора Т = 521,2/1000 = 0,5212 г/см 3 .
Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.
Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.
Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.
Количество вещества воды: n = 781,8/18 = 43,43 моль.
Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.
Мольное отношение равно 5,32/43,43 = 0,1225.
Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см 3 ), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.
Решение.
2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.
Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.
Объём раствора кислоты V = 14/1,611 = 8,69 мл.
Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см 3 .
Решение.
Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.
Масса раствора m = 5000 + 75,9 = 5075,9 г.
Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.
Количество вещества NH3 равно 100/22,4 = 4,46 моль.
Объём раствора V = 5,0759/0,992 = 5,12 л.
Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.
Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?
Решение.
Переводим молярность в нормальность:
Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.
Задача 5. Какой объем, мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?
Плотности растворов NaCl:
С, мас.% | 2 | 6 | 7 | 14 |
ρ, г/см 3 | 2,012 | 1,041 | 1,049 | 1,101 |
Решение.
Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:
Определяем массу раствора: m = 150·1,0426 = 156,39 г.
Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.
Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):
Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.
Задачи для самостоятельного решения
3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.
3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.
3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.
3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.
3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.
3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?
0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.
3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.
255 мл; 2 н; 0,203 г/мл.
3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.
0,035; 0,0177; 1:55,6.
3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.
74,28 г; 3,05 М; 0,179 г/мл.
3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.
Источник
Растворы. Способы выражения концентрации растворов
Растворы. Способы выражения концентрации растворов
Важной характеристикой раствора является концентрация.
Концентрация – это величина, измеряемая количеством растворенного вещества, содержащегося в определенной массе или объеме раствора или растворителя.
Наиболее часто применяемые способы выражения концентрации: массовая доля , молярная концентрация , молярная концентрация эквивалента , моляльность , молярная доля , объемная доля , титр .
Массовую долю w( X ) выражают в долях единицы, процентах (%), промилле (тысячная часть процента) и в миллионных долях (млн –1 ) . Массовую долю рассчитывают по формулам:
,
где m ( X ) – масса растворенного вещества Х, кг (г);
m р-ра – масса раствора, кг (г).
Например: дан 0.85% раствор хлорида натрия. Это означает, что в 100 г раствора содержится 0.85 г NaCl .
Молярную концентрацию с(Х) выражают в моль/л. Молярную концентрацию находят по формуле:
,
где n( X ) – количество растворенного вещества, моль;
M ( X ) – молярная масса растворенного вещества, кг/моль, или г/моль;
m ( X ) – масса растворенного вещества, соответственно, кг или г;
V р-ра – объем раствора, л.
Например: дан 0.2 М раствор BaCl 2 . Это означает, что в 1 л (1000 мл) раствора содержится 0.2 моль BaCl 2 и масса хлорида бария m ( BaCl 2 ) = с· M · V = 0.2 моль/л·208 г/моль·1 л = 41.6 г.
,
где m (р-ль) – масса растворителя, кг.
Моляльность показывает, сколько моль растворенного вещества Х приходится на 1 кг растворителя.
В химии широко используют понятие эквивалента и фактора эквивалентности.
Эквивалентом называют реальную или условную частицу вещества Х, которая в данной обменной реакции обменивает один однозарядный ион или в данной окислительно–восстановительной реакции переносит один электрон.
Фактор эквивалентности f экв (Х) – число, обозначающее, какая доля реальной частицы вещества Х эквивалентна одному иону водорода в данной кислотно–основной реакции или одному электрону в данной окислительно-восстановительной реакции.
Фактор эквивалентности рассчитывают на основе стехиометрии данной реакции из равенства:
где z – основность кислоты или кислотность основания данной кислотно-основной реакции, или число электронов, присоединяемых или теряемых частицей в данной окислительно-восстановительной реакции.
Фактор эквивалентности зависит от реакции, в которой участвует данное вещество; так для фосфорной кислоты в реакциях:
Для перманганата калия в реакциях:
MnO 4 — + 8 H + + 5ē → M n 2+ + 4 H 2 O ; f экв = 1/5.
MnO 4 — + 2 H 2 O + 3ē → M n o 2 + 4 OH — ; f экв = 1/3.
Для иодид-иона и иода в реакции:
2I — — 2ē → I 2 0 ; f экв (I — ) = 1/1; f экв (I 2 ) = 1/2.
Молярной массой эквивалента вещества Х (масса одного моль эквивалента вещества) называют величину, измеряемую произведением фактора эквивалентности на молярную массу вещества Х.
где М( f экв (Х)) – молярная масса эквивалента.
Единица измерения молярной массы эквивалента – г/моль.
Соответственно для растворов используют понятие молярной концентрации эквивалента (нормальная концентрация).
Молярную концентрацию эквивалента (нормальность) с( f экв (Х)) рассчитывают по формуле:
,
где n ( f экв (Х)) – количество вещества эквивалента, моль;
V р-ра – объем раствора, л;
Молярную концентрацию эквивалента (нормальную концентрацию) обозначают c ( f экв (Х)). Единицы ее измерения – моль/м 3 , моль/дм 3 , моль/л. В медицине чаще используют единицу моль/л. Форма записи, например,
с KMnO 4 ( 1 / 5 ) = 0.1 моль/л или 0.1 н. KMnO 4 . Это означает, что в 1 л раствора содержится 0.1 моль эквивалента перманганата калия.
Молярная концентрация эквивалента (нормальность) связана с молярной концентрацией (молярностью) следующим выражением:
.
Молярную долю x ( X i ) выражают в долях единицы или в процентах. Молярную долю рассчитывают по формуле:
,
где n ( X i )– количество вещества данного компонента, моль;
– суммарное количество всех компонентов раствора, моль.
Объемную долю φ(Х) выражают в долях единицы или в процентах, ее рассчитывают по формуле
,
где V (Х)– объем данного компонента Х, л;
V р-ра – общий объем раствора, л.
Титр раствора обозначают T ( X ) , единица измерения – г/см 3 , г/мл. Титр раствора можно рассчитать по формуле:
,
где m (Х) – масса вещества, обычно г;
V р-ра – объем раствора, мл.
Титр показывает, какая масса вещества содержится в 1 мл его раствора.
В клинической практике нередко выражают концентрацию ионов в миллиграмм–процентах (мг %). Это масса вещества, выраженная в миллиграммах на 100 мл раствора.
Формулы перехода от одних способов выражения концентрации к другим см. прил., табл. №2.
В 180 г воды растворили H 3 PO 4 массой 9.8 г. Определите молярную долю (Х) и моляльную концентрацию (С m ) ортофосфорной кислоты.
;
n ( H 3 PO 4 )= = 0.1 моль;
n ( H 2 O ) = = 10 моль;
Х ( H 3 PO 4 ) = = 0.0099;
С m ( H 3 PO 4 ) = = 0.556 моль/кг.
Ответ: Х ( H 3 PO 4 ) = 0.0099; С m ( H 3 PO 4 ) = 0.0566 моль/кг.
Массовая доля хлорида натрия в физиологическом растворе 0.9% (ρ = 1 г/мл). Вычислите: а) молярную концентрацию и титр NaCl в этом растворе; б) массу соли, веденной в организм при вливании 500 мл данного раствора.
с ( X ) = ; T =
; Т =
;
с ( NaCl ) = = 0.154 моль/л;
Т ( NaCl ) = = 0.00900 г/мл;
m ( NaCl ) = 0.00900 г/мл · 500 мл = 4.5 г.
Ответ: с ( NaCl ) = 0.154 моль/л; Т ( NaCl ) = 0.00900 г/мл.
Сколько мл 80% раствора CH 3 COOH (ρ = 1.070 г/см 3 ) необходимо для приготовления 500 мл 0.1 М раствора?
Найдем, сколько граммов уксусной кислоты содержится в 500 мл раствора:
.
Определим, в какой массе 80% раствора уксусной кислоты содержится 3.0 г CH 3 COOH :
.
Найдем объем 80% раствора CH 3 COOH :
.
Источник