Назовите способы выражения концентрации вещества

Растворы. Способы выражения концентрации растворов

Материалы портала onx.distant.ru

Растворы. Способы выражения концентрации растворов

Способы выражения концентрации растворов

Существуют различные способы выражения концентрации растворов.

Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:

Массовый процент представляет собой массовую долю, умноженную на 100:

ω(Х) = m(Х)/m · 100% (0%

где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.

Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.

Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:

Мольный процент представляет мольную долю, умноженную на 100:

Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:

φ(Х) = V(Х)/V (0

Объёмный процент представляет собой объёмную долю, умноженную на 100.

Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:

Cм(Х) = n(Х)/V (6)

Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.

Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:

Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.

Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см 3 раствора:

T(Х) = m(Х)/V (8)

где m(X) – масса растворённого вещества X, V – объём раствора в мл.

Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:

μ(Х) = n(Х)/mр-ля (9)

где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.

Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.

Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:

Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.

Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:

Результаты расчётов приведены в табл. 2.

Таблица 1. К определению молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2 M Na2SO4 ? 6 н FeCl3 ?
1,5 M Fe2(SO4)3 ? 0,1 н Ва(ОН)2 ?
Реакции окисления-восстановления 0,05 М KMnO4

в кислой среде

? 0,03 М KMnO4

в нейтральной среде

?

Значения молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2M Ma2SO4 0,4н 6н FeCl3
1,5M Fe2(SO4)3 0,1н Ва(ОН)2 0,05М
Реакции окисления-восстановления 0,05М KMnO4 в кислой среде 0,25н 0,03М KMnO4

в нейтральной среде

0,01М

Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:

Примеры решения задач

Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см 3 .

Решение.

Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.

Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.

Молярность раствора См = 521,2/98 = 5,32 М.

Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.

Титр раствора Т = 521,2/1000 = 0,5212 г/см 3 .

Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.

Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.

Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.

Количество вещества воды: n = 781,8/18 = 43,43 моль.

Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.

Мольное отношение равно 5,32/43,43 = 0,1225.

Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см 3 ), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.

Решение.

2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.

Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.

Объём раствора кислоты V = 14/1,611 = 8,69 мл.

Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см 3 .

Решение.

Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.

Масса раствора m = 5000 + 75,9 = 5075,9 г.

Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.

Количество вещества NH3 равно 100/22,4 = 4,46 моль.

Объём раствора V = 5,0759/0,992 = 5,12 л.

Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.

Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?

Решение.

Переводим молярность в нормальность:

Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.

Задача 5. Какой объем, мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?

Плотности растворов NaCl:

С, мас.% 2 6 7 14
ρ, г/см 3 2,012 1,041 1,049 1,101

Решение.

Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:

Определяем массу раствора: m = 150·1,0426 = 156,39 г.

Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.

Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):

Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.

Задачи для самостоятельного решения

3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.

3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.

3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.

3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.

3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.

3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?

0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.

3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.

255 мл; 2 н; 0,203 г/мл.

3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.

0,035; 0,0177; 1:55,6.

3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.

74,28 г; 3,05 М; 0,179 г/мл.

3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.

Источник

Растворы. Способы выражения концентрации растворов

Растворы. Способы выражения концентрации растворов

Важной характеристикой раствора является концентрация.

Концентрация – это величина, измеряемая количеством растворенного вещества, содержащегося в определенной массе или объеме раствора или растворителя.

Наиболее часто применяемые способы выражения концентрации: массовая доля , молярная концентрация , молярная концентрация эквивалента , моляльность , молярная доля , объемная доля , титр .

Массовую долю w( X ) выражают в долях единицы, процентах (%), промилле (тысячная часть процента) и в миллионных долях (млн –1 ) . Массовую долю рассчитывают по формулам:

,

где m ( X ) – масса растворенного вещества Х, кг (г);

m р-ра – масса раствора, кг (г).

Например: дан 0.85% раствор хлорида натрия. Это означает, что в 100 г раствора содержится 0.85 г NaCl .

Молярную концентрацию с(Х) выражают в моль/л. Молярную концентрацию находят по формуле:

,

где n( X ) – количество растворенного вещества, моль;

M ( X ) – молярная масса растворенного вещества, кг/моль, или г/моль;

m ( X ) – масса растворенного вещества, соответственно, кг или г;

V р-ра – объем раствора, л.

Например: дан 0.2 М раствор BaCl 2 . Это означает, что в 1 л (1000 мл) раствора содержится 0.2 моль BaCl 2 и масса хлорида бария m ( BaCl 2 ) = с· M · V = 0.2 моль/л·208 г/моль·1 л = 41.6 г.

,

где m (р-ль) – масса растворителя, кг.

Моляльность показывает, сколько моль растворенного вещества Х приходится на 1 кг растворителя.

В химии широко используют понятие эквивалента и фактора эквивалентности.

Эквивалентом называют реальную или условную частицу вещества Х, которая в данной обменной реакции обменивает один однозарядный ион или в данной окислительно–восстановительной реакции переносит один электрон.

Фактор эквивалентности f экв (Х) – число, обозначающее, какая доля реальной частицы вещества Х эквивалентна одному иону водорода в данной кислотно–основной реакции или одному электрону в данной окислительно-восстановительной реакции.

Фактор эквивалентности рассчитывают на основе стехиометрии данной реакции из равенства:

где z – основность кислоты или кислотность основания данной кислотно-основной реакции, или число электронов, присоединяемых или теряемых частицей в данной окислительно-восстановительной реакции.

Фактор эквивалентности зависит от реакции, в которой участвует данное вещество; так для фосфорной кислоты в реакциях:

Для перманганата калия в реакциях:

MnO 4 — + 8 H + + 5ē → M n 2+ + 4 H 2 O ; f экв = 1/5.

MnO 4 — + 2 H 2 O + 3ē → M n o 2 + 4 OH — ; f экв = 1/3.

Для иодид-иона и иода в реакции:

2I — — 2ē → I 2 0 ; f экв (I — ) = 1/1; f экв (I 2 ) = 1/2.

Молярной массой эквивалента вещества Х (масса одного моль эквивалента вещества) называют величину, измеряемую произведением фактора эквивалентности на молярную массу вещества Х.

где М( f экв (Х)) – молярная масса эквивалента.

Единица измерения молярной массы эквивалента – г/моль.

Соответственно для растворов используют понятие молярной концентрации эквивалента (нормальная концентрация).

Молярную концентрацию эквивалента (нормальность) с( f экв (Х)) рассчитывают по формуле:

,

где n ( f экв (Х)) – количество вещества эквивалента, моль;

V р-ра – объем раствора, л;

Молярную концентрацию эквивалента (нормальную концентрацию) обозначают c ( f экв (Х)). Единицы ее измерения – моль/м 3 , моль/дм 3 , моль/л. В медицине чаще используют единицу моль/л. Форма записи, например,
с KMnO 4 ( 1 / 5 ) = 0.1 моль/л или 0.1 н. KMnO 4 . Это означает, что в 1 л раствора содержится 0.1 моль эквивалента перманганата калия.

Молярная концентрация эквивалента (нормальность) связана с молярной концентрацией (молярностью) следующим выражением:

.

Молярную долю x ( X i ) выражают в долях единицы или в процентах. Молярную долю рассчитывают по формуле:

,

где n ( X i )– количество вещества данного компонента, моль;

– суммарное количество всех компонентов раствора, моль.

Объемную долю φ(Х) выражают в долях единицы или в процентах, ее рассчитывают по формуле

,

где V (Х)– объем данного компонента Х, л;

V р-ра – общий объем раствора, л.

Титр раствора обозначают T ( X ) , единица измерения – г/см 3 , г/мл. Титр раствора можно рассчитать по формуле:

,

где m (Х) – масса вещества, обычно г;

V р-ра – объем раствора, мл.

Титр показывает, какая масса вещества содержится в 1 мл его раствора.

В клинической практике нередко выражают концентрацию ионов в миллиграмм–процентах (мг %). Это масса вещества, выраженная в миллиграммах на 100 мл раствора.

Формулы перехода от одних способов выражения концентрации к другим см. прил., табл. №2.

В 180 г воды растворили H 3 PO 4 массой 9.8 г. Определите молярную долю (Х) и моляльную концентрацию (С m ) ортофосфорной кислоты.

;

n ( H 3 PO 4 )= = 0.1 моль;

n ( H 2 O ) = = 10 моль;

Х ( H 3 PO 4 ) = = 0.0099;

С m ( H 3 PO 4 ) = = 0.556 моль/кг.

Ответ: Х ( H 3 PO 4 ) = 0.0099; С m ( H 3 PO 4 ) = 0.0566 моль/кг.

Массовая доля хлорида натрия в физиологическом растворе 0.9% (ρ = 1 г/мл). Вычислите: а) молярную концентрацию и титр NaCl в этом растворе; б) массу соли, веденной в организм при вливании 500 мл данного раствора.

с ( X ) = ; T = ; Т = ;

с ( NaCl ) = = 0.154 моль/л;

Т ( NaCl ) = = 0.00900 г/мл;

m ( NaCl ) = 0.00900 г/мл · 500 мл = 4.5 г.

Ответ: с ( NaCl ) = 0.154 моль/л; Т ( NaCl ) = 0.00900 г/мл.

Сколько мл 80% раствора CH 3 COOH (ρ = 1.070 г/см 3 ) необходимо для приготовления 500 мл 0.1 М раствора?

Найдем, сколько граммов уксусной кислоты содержится в 500 мл раствора:

.

Определим, в какой массе 80% раствора уксусной кислоты содержится 3.0 г CH 3 COOH :

.

Найдем объем 80% раствора CH 3 COOH :

.

Источник

Читайте также:  Измерения горизонтальных углов способом полного приема
Оцените статью
Разные способы