Назовите способы возбуждения машины постоянного тока

Способы возбуждения машин постоянного тока и их классификация

Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Читайте также:  Способы установки пожарных гидрантов

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Возбуждение машин постоянного тока

Для работы электрической машины необходимо наличие магнитного поля. Это поле в большинстве машин создается постоянным электрическим током, проходящим в обмотке возбуждения, расположенной на главных полюсах (машины с электромагнитным возбуждением).

Свойства МПТ в значительной степени зависят от способа включения обмотки возбуждения, т.е. от способа возбуждения.

В дальнейшем нам придется рассматривать электрические схемы машин, поэтому сначала рассмотрим условные обозначения обмоток в соответствии с Государственными стандартами России.

обмотка якоря с щетками
обмотка возбуждения главных полюсов, включенная независимо или параллельно обмотке якоря
обмотка возбуждения, включенная последовательно с обмоткой якоря
компенсационная обмотка
обмотка возбуждения добавочных полюсов

Начала и концы отмоток обозначаются следующим образом:

— обмотка якоря – Я1 и Я2;

— обмотка добавочных полюсов – Д1 и Д2;

— компенсационная обмотка – К1 и К2;

— обмотка возбуждения независимая – М1 и М2;

— обмотка возбуждения параллельная – Ш1 и Ш2;

— обмотка возбуждения последовательная – C1 и C2.

По способам возбуждения МПТ можно классифицировать следующим образом:

Рисунок 45 Способы возбуждения машин постоянного тока

а) машины независимого возбуждения, в которых обмотка возбуждения (ОВ) питается постоянным током от источника, электрически не связанного с обмоткой якоря (возбудителя);

б) машины параллельного возбуждения (шунтовые),в которых обмотка возбуждения и обмотка якоря соединены параллельно;

в) машины последовательного возбуждения (сериесные),в которых обмотка возбуждения и обмотка якоря соединены последовательно;

г) машины смешанного возбуждения (компаундные),в которых имеются две обмотки возбуждения – параллельная ОВ1 и последовательная ОВ2;

Источник

Способы возбуждения машин постоянного тока

Работа и свойства электрических машин постоянного тока (как генераторов, так и двигателей) в значительной степени зависят от способа возбуждения в них магнитного потока. Действительно, магнитный поток входит множителем как в выражение ЭДС, так и в выражение электромагнитного момента, поэтому необходимо знать, как создается магнитный поток, от каких величин он зависит, как и для какой цели нужно изменять его значение.
Согласно ГОСТов, по способу возбуждения машины постоянного тока классифицируют следующим образом:
а) машины независимого возбуждения, обмотка возбуждения которых питается от постороннего источника электрического тока;
б) машины параллельного возбуждения, обмотка возбуждения которых соединена параллельно с цепью якоря;
в) машины последовательного возбуждения, обмотка возбуждения которых соединена последовательно с цепью якоря;
г) машины смешанного возбуждения, у которых имеются две обмотки возбуждения, одна из которых соединена последовательно с цепью якоря (другая — может быть либо независимой, либо, чаще, параллельной). Если МДС обмоток возбуждения имеют одно направление, то такое их включение называется согласным. Если же МДС обмоток направлены в разные стороны, то включение называется встречным.
Схемы всех четырех типов машин показаны соответственно на рис. 1.
Все эти электрические машины имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения (ОВ). Обмотки независимого и параллельного возбуждения изготавливают с большим числом витков, из провода малого сечения, а обмотку последовательного возбуждения — с малым числом витков из провода большого сечения.
Существуют также машины небольшой мощности, магнитное поле у которых создается либо только постоянными магнитами, либо еще и обмотками возбуждения, питаемыми электрическим током. Свойства первых близки к свойствам машин независимого, а вторых — смешанного или независимого возбуждения (в зависимости от способа подключения обмотки возбуждения).

Читайте также:  Выгребная яма способ очистке


Рис. 1. Схемы электрических машин постоянного тока независимого (а), параллельного (6), последовательного (в) и смешанного (г)
возбуждений

Во всех машинах на возбуждение расходуется от 0,5 % до 5 % номинальной мощности машины, причем первое значение относится к очень мощным машинам, а второе — к машинам мощностью около 1 кВт.
Как видно из рис. 1, значение тока возбуждения /в машины независимого возбуждения не зависит от тока якоря и определяется напряжением источника питания, причем для регулирования тока /в последовательно в цепь обмотки возбуждения включают резистор.
У машины параллельного возбуждения, согласно закону Ома,
/в = Ur/(RB + Rр), (1)
где RB — сопротивление обмотки возбуждения, a Rp — последовательно с нею включаемого регулировочного резистора.
У машин последовательного возбуждения /в = /я.
Согласно ГОСТ 2582—81, выводы всех обмоток маркируются следующим образом:
Я1 и Я2 — начало и конец обмотки якоря;
С1 и С2 — начало и конец последовательной (сериесной) обмотки возбуждения;
Ш1 и Ш2 — начало и конец параллельной (шунтовой) обмотки возбуждения;
К1 и К2 — начало и конец компенсационной обмотки;
Н1 и Н2 — начало и конец обмотки независимого возбуждения;
Д1 и Д2 — начало и конец обмотки добавочных полюсов.
Возможны случаи, когда машина имеет несколько обмоток одного наименования. В этом случае их начала и концы после буквенных обозначений должны иметь две цифры:
первая указывает порядковый номер обмотки, a вторая,, — начало (1) или конец (2). Например, начало второй параллельной обмотки возбуждения будет иметь обозначение Ш21.

Источник

Способы возбуждения машин постоянного тока

Для работы электрической машины постоянного тока необходимо наличие постоянного магнитного поля, которое создаётся обмоткой возбуждения (ОВ), питаемой постоянным током, или постоянными магнитами. Свойства машин постоянного тока в значительной степени определяются способом включения ОВ, т. е. способом возбуждения (рис. 7). По способам возбуждения машины постоянного тока классифицируют следующим образом:

— машины независимого возбуждения, в которых ОВ питается постоянным током от источника, электрически не связанного с обмоткой якоря,

— машины параллельного возбуждения (шунтовые), в которых ОВ и обмотка якоря соединены параллельно,

— машины последовательного возбуждения (сериесные), в которых ОВ и обмотка якоря соединены последовательно,

— машины смешанного возбуждения (компаундные), в которых имеется две ОВ – параллельная ОВ1 и последовательнаяОВ2,

-машины с возбуждением постоянными магнитами.

Рис. 7. Способы возбуждения машин постоянного тока:

а) – независимое; б) – параллельное; в) – последовательное;

Читайте также:  Флуконазол таблетки 150 мг способ применения

г – смешанное; д) – от постоянных магнитов.

Все указанные машины (кроме последних) относятся к машинам с электромагнитным возбуждением.

к машинам с электромагнитным возбуждением.

Начала и концы обмоток машин постоянного тока обозначают следующим образом:

— обмотка якоря – Я1 и Я2,

— обмотка добавочных полюсов – Д1 и Д2,

— компенсационная обмотка – К1 и К2,

— обмотка возбуждения независимая – М1 и М2,

— обмотка возбуждения параллельная – Ш1 и Ш2,

— обмотка возбуждения последовательная – С1 и С2.

Тема 1.3. Коммутация в машинах постоянного тока

Источник

Способы возбуждения двигателя постоянного тока.

Под возбуждением электрических машин понимают создание в них магнитного поля, необходимого для работы электродвигателя. Схемы возбуждения электродвигателей постоянного тока показаны на рисунке.

Схемы возбуждения электродвигателей постоянного тока: а — независимое, б — параллельное, в — последовательное, г — смешанное

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы:

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Порядок установки переносных заземлений в электроустановках до 1000 В.

4,5 1, Устанавливать заземления на токоведущие части необходимо непосредственно после проверки отсутствия напряжения.

4.5.2. Переносные заземления сначала нужно присоединить к заземляющему устройству,а затем, после проверки отсутствия напряжения, установить на токоведущие части.Снимать переносное заземление необходимо в обратной последовательности:сначала снять его с токоведущих частей, а затем от заземляющего устройства.

4.5.3. Установка и снятие переносных заземлений должны выполняться в диэлектрических перчатках с применением в электроустановках выше 1000 В изолирующей штанги. Закреплять зажимы переносных заземлений следует этой же штангой или непосредственно руками в диэлектрических перчатках.

4.5.4. Запрещается пользоваться для заземления проводниками, не предназначенными для этой Дели, а также присоединять заземления посредством скрутки.

БИЛЕТ № 18

Закон Ома для полной цепи

Закон Ома для полной цепи – эмпирический (полученный из эксперимента) закон, который устанавливает связь между силой тока, электродвижущей силой (ЭДС) и внешним и внутренним сопротивлением в цепи.

При проведении реальных исследований электрических характеристик цепей с постоянным током необходимо учитывать сопротивление самого источника тока. Таким образом в физике осуществляется переход от идеального источника тока к реальному источнику тока, у которого есть свое сопротивление (см. рис. 1).

Рис. 1. Изображение идеального и реального источников тока

Рассмотрение источника тока с собственным сопротивлением обязывает использовать закон Ома для полной цепи.

Сформулируем закона Ома для полной цепи так (см. рис. 2): сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

Рис. 2. Схема закона Ома для полной цепи.

Дата добавления: 2018-08-06 ; просмотров: 1719 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Разные способы