Назовите способы изменения внутренней энергии пример

Назовите способы изменения внутренней энергии пример

Связь внутренней энергии с температурой

Кинетическая энергия движения частиц и потенциальная энергия их взаимодействия составляют внутреннюю энергию тела.

Внутренняя энергия тела не является постоянной величиной и связана с изменением температуры тела:

1. при повышении температуры внутренняя энергия тела увеличивается, т.к. молекулы тела начинают активнее двигаться, расстояние между ними увеличивается и возрастает их кинетическая и потенциальная энергия;

2. при понижении температуры внутренняя энергия тела уменьшается, т.к. молекулы тела начинают двигаться менее активно, расстояние между ними уменьшается и понижается их кинетическая и потенциальная энергия.

Таким образом, температура – это главная характеристика внутренней энергии тела.

История развития представлений об изменении внутренней энергии

Перед тем, как рассмотреть конкретные возможные причины процесса изменения внутренней энергии тела заметим, что теория, которая связывает энергию движения и взаимодействия частиц со внутренней энергией тела, сложилась не сразу.

Например, почти до конца XIX века считалось, что существует такая условная субстанция, как теплород. Считалось, что когда теплород втекает в тело, то его температура увеличивается, как и внутренняя энергия, а когда вытекает, температура с внутренней энергией уменьшается. Понятие теплорода было введено в конце XVIII века Лавуазье, а уже на рубеже XVIII и XIX веков были проведены первые эксперименты, подтверждавшие несостоятельность этой теории.

Кроме того, для описания процесса сжигания топлива существовала аналогичная теория, которая говорила, что существует такая гипотетическая материя, как флогистон. Считалось, что он содержится во всех горючих веществах и при их горении высвобождается и дает высокую температуру. Термин был введен впервые в начале XVIII века учеными Иоганном Бехером и Георгом Шталем . Позже и теория флогистона была раскритикована и сегодня не упоминается в научных трудах, как и теория теплорода.

Мы будем рассматривать возможные варианты изменения внутренней энергии с точки зрения развития науки, поэтому сначала обсудим изменение внутренней энергии из-за совершения работы. Убедиться в том, что совершение работы влияет на процесс изменения внутренней энергии, можно на простом опыте – потрите руки друг о друга, и вы заметите, как ладони нагреваются, это и будет свидетельствовать об изменении внутренней энергии. Что демонстрирует этот опыт? Он наглядно демонстрирует, что при совершении механической работы (трение ладоней) повышается их внутренняя энергия.

Изменение внутренней энергии вследствие совершения работы

Вы уже знакомы с понятием механическая работа тела, она связана с перемещением тела при приложении к нему определенной силы. Если совершается механическая работа, то меняется энергия тела, аналогичное можно утверждать конкретно про внутреннюю энергию тела. Это удобно изобразить на схеме:

Первые опыты по доказательству несостоятельности теории теплорода и подтверждению влияния процесса совершения работы на изменение внутренней энергии тела провел английский инженер и физик Бенджамин Румфорд, который в конце XVIII века при изготовлении пушек занимался сверлением их ствола. Он заметил, что при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение конской тягой. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура резко поднялась. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой (см. Рис. 1). В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Румфорд объяснил это явление с помощью представления о теплоте как особом виде движения.

Опыт Румфорда доказал, что процесс совершения работы оказывает непосредственное влияние изменение внутренней энергии тела, и внутренняя энергия тела может быть изменена при совершении работы.

Таким образом, работа является мерой изменения внутренней энергии при превращении механической энергии во внутреннюю или внутренней энергии в механическую.

Изменение внутренней энергии вследствие теплопередачи

Второй способ изменения внутренней энергии тела мы можем легко наблюдать каждый день в повседневной жизни, и он был давно всем известен – это теплопередача.

Теплопередача – это процесс изменения внутренней энергии без совершения работы над телом или самим телом.

Процессы теплопередачи делятся на три вида, которые удобно изобразить на схеме:

Более подробно о каждом из этих видов теплопередачи мы поговорим на последующих уроках.

Читайте также:  Предложите способ определения жиров

Отметим, что процессы теплопередачи и совершения работы, как правило, протекают параллельно и одновременно влияют на изменение у тела внутренней энергии.

Теперь мы можем изобразить два варианты изменения внутренней энергии тела на схеме:

На следующем уроке мы уделим особое внимание описанию процесса теплопроводности при теплопередаче.

Источник

Внутренняя энергия вещества и способы ее изменения

теория по физике 🧲 термодинамика

Внутренняя энергия сосредоточена «внутри» вещества и складывается из потенциальной энергии взаимодействующих молекул (атомов) и кинетической энергии их движения:

U = ∑ E k 0 + ∑ E p 0

∑ E k 0 — кинетическая энергия молекул (атомов), которая зависит от скорости их движения. Она изменяется только при изменении температуры. В процессе агрегатных переходов кинетическая энергия молекул остается неизменной.

∑ E p 0 — потенциальная энергия взаимодействия молекул, которая зависит от расстояния между ними. Она изменяется при изменении температуры и объема. Например, в процессе агрегатных переходов изменяется именно потенциальная энергия молекул.

Способы изменения внутренней энергии:

  • Совершение работы (за счет трения или ударов).
  • Испарение (в процессе испарения внутренняя энергия жидкости понижается).
  • Теплопередача (приведение в соприкосновение с более холодным или более нагретым телом).

Виды теплопередачи

Выделяют три вида теплопередачи: теплопроводность, конфекцию и излучение.

Теплопроводность

Теплопроводность — способность тел переносить внутреннюю энергию без переноса вещества от более нагретых участков тела к более холодным.

При теплопроводности происходит постепенное увеличение скорости движения молекул. Это возможно только благодаря межмолекулярному взаимодействию. Поэтому теплопроводность в твердых телах происходит быстрее, чем в жидкостях. В газах она осуществляется еще медленнее. Для сохранения тепла используют пористые материалы, в которых много воздуха. Воздух — это смесь газов, поэтому он плохо переводит тепло.

Важно! В вакууме теплопроводность невозможна.

Конвекция

Конвекция — это перенос внутренней энергии, сопровождающийся переносом вещества.

При конвекции теплые слои жидкости или газа поднимаются, а холодные опускаются. Конвекция осуществляется только в жидкостях и газах.

Важно! В твердых телах и в вакууме конвекция невозможна.

Излучение

Излучение — это перенос теплоты в пространстве, осуществляемый в результате распространения электромагнитных волн, энергия которых при взаимодействии с веществом переходит в тепло.

Энергию излучают все нагретые тела. Чем больше нагрето тело, тем сильнее излучение. Теплопередача за счет излучения возможна в любой среде, в том числе и в вакууме.

Темные поверхности хорошо поглощают излучение, но быстро отдают энергию при охлаждении. Зеркальные и светлые поверхности отражают часть излучения и медленно остывают.

Количество теплоты

Количество теплоты Q (Дж) — физическая величина, которая показывает, на сколько изменяется внутренняя энергия вещества в процессе теплопередачи:

Если внутренняя энергия вещества увеличивается, то Q > 0. Это происходит при нагревании, плавлении и кипении.

Если внутренняя энергия вещества уменьшается, Q Формула теплоты при нагревании или охлаждении

При нагревании или охлаждении вещество получает (отдает) количество теплоты, определяемое по формуле:

Q = c m Δ t = c m ( t − t 0 )

∆t — изменение температуры вещества (в о С или К), t0— начальная температура вещества, t — конечная температура вещества, m — его масса (кг), c — удельная теплоемкость вещества (Дж/(кг∙К)).

Удельная теплоемкость вещества показывает, какое количество теплоты необходимо затратить, чтобы нагреть 1 кг вещества на 1 градус. Такое же количество теплоты выделится при охлаждении 1 кг этого вещества на 1 градус.

Внимание! Удельная теплоемкость вещества — табличная величина.

Количество теплоты также определяется формулой:

∆T — изменение температуры в Кельвинах, а C — теплоемкость вещества.

Теплоемкость вещества показывает, сколько теплоты поглощает тело при нагревании на 1 К. Измеряется в Дж/кг. Численно теплоемкость равна произведению массы вещества на его удельную теплоемкость:

Пример №1. Температура медного образца массой 100 г увеличилась на 40 о С. Какое количество теплоты получил образец? Удельная теплоемкость меди равна 380 Дж/(кг∙К).

Q = c m Δ t = 380 · 0 , 1 · 40 = 1520 ( Д ж )

Сгорание топлива

При сгорании топлива выделяется количество теплоты, определяемое формулой:

m — масса сгоревшего топлива (кг), q — удельная теплота сгорания топлива (Дж/кг).

Удельная теплота сгорания показывает, какое количество теплоты выделяется при полном сгорании 1 кг данного вида топлива.

Внимание! Удельная теплота сгорания — табличная величина.

Пример №2. Сгорело 5 сухих березовых поленьев. Каждый весил 1 кг. Определить, количество выделенной теплоты, если удельная теплота сгорания березовых дров составляет 15 МДж/кг.

15МДж = 15∙10 9 Дж

Так как сгорело 5 поленьев по 1 кг, то всего сгорело 5 кг сухих березовых дров. Отсюда:

Q = q m = 5 · 15 · 10 9 = 75 · 10 9 ( Д ж ) = 75 ( М Д ж )

Алгоритм решения

  1. Определить тип теплопередачи.
  2. Вспомнить, как происходит этот тип теплопередачи.
  3. Сделав анализ рисунка, установить, какой брусок имеет указанную в задаче температуру.
Читайте также:  Способы соединения кокетки с основной деталью

Решение

Так как это твердые тела, поверхности которых соприкасаются друг с другом, и перенос тепла происходит без переноса вещества, то этот вид теплопередачи является теплопроводностью. Тепло всегда направлено от более нагретого тела к менее нагретому.

На рисунке видно, что самым нагретым телом является нижний брусок, так как он только отдает тепло, но не принимает его. Средний брусок справа менее нагрет, чем нижний, так как принимает от него тепло. Но он более теплый по сравнению со средним бруском слева, так как он делится с ним теплом. И оба этих бруска отдают свою энергию верхнему бруску, который сам только принимает тепло, но не отдает его. Следовательно, именно он имеет температуру +40 о С.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Назовите способы изменения внутренней энергии пример

Внутреннюю энергию тела можно изменить:

1) теплопередачей (теплопроводностью, конвекцией и излучением);

2) совершением механической работы над телом (трение, удар, сжатие и др.).

Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.

$$ = \Delta U$$ — количество теплоты. (8)

Рассмотрим эти процессы более подробно.

1. Виды теплопередачи

А)

явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).

Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.

В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).

Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.

Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.

В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:

Здесь $$ k$$ – коэффициент теплопроводности вещества слоя,
$$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3),
$$ h$$ – толщина слоя вещества,
$$ t$$ – время наблюдения,
$$ \Delta T=_<1>—_ <2>$$ — разность температур между границами слоя $$ (_<1>>_<2>)$$.

Например, тепловая энергия уходит из комнаты через стену на улицу.

$$ S$$ – площадь поверхности стены,

  • $$ h$$ – толщина слоя вещества, составляющего стену.
  • $$ \Delta T$$ – разность температур между комнатой $$ \left(_<1>\right)$$ и улицей $$ \left(_<2>\right)$$;

$$ k$$ – коэффициент теплопроводности вещества стены.

Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).

Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.

называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.

Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.

Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.

На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.

В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.

Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.

Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:

$$I=\sigma ·^<4>$$ — (закон Стефана—Больцмана). (10)

Где `sigma=5,67*10^(-8)` `»Вт»//»м»^2«»К»^4` — постоянная Стефана-Больцмана.

(Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.)

В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.

2. Работа и изменение внутренней энергии.
Работа газа при расширении и сжатии

Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.

При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.

Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.

Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна

Здесь $$ F$$ – сила, действующая на поршень со стороны газа,

  • $$ p$$ – давление газа,
  • $$ S$$ – площадь поверхности поршня,

$$ \Delta V$$ – изменение объёма газа.

В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом . Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ _<1>$$ до конечного объёма $$ _<2>$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ ^<\text<'>>$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ <>^<">S< >^<">=p(_<2>—_<1>)$$.

Нетрудно убедиться, что $$ <>^<">S< >^<">=^<\text<'>>$$, т. е. работа газа при расширении от объёма $$ _<1>$$ до объёма $$ _<2>$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.

Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.

Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ _=

_·\Delta _$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:

Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ \Delta _$$). Площадь под ломаной при этом возрастёт,

так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.

При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:

Работа газа численно равна площади фигуры под графиком $$ p\left(V\right)$$.

Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:

В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.

Источник

Читайте также:  Способы установки печи для бани
Оцените статью
Разные способы