Назови разные способы решения уравнений реши их тем способом который ты находишь самым удобным

Содержание
  1. Страница 20. Урок 6 — Математика 2 класс. Петерсон Л.Г. Учебник часть 2
  2. Вопрос
  3. Подсказка
  4. Ответ
  5. Вопрос
  6. Подсказка
  7. Ответ
  8. Вопрос
  9. Подсказка
  10. Ответ
  11. Вопрос
  12. Подсказка
  13. Ответ
  14. Пушкин сделал!
  15. Урок 6. Угол. Прямой угол. Л.Г. Петерсон Математика 2 класс Ответы
  16. 1. Найди плоские поверхности у предметов окружающей обстановки.
  17. 2. Практическая работа Отметь на листе бумаги точки A и проведи лучи AB и AC. На сколько частей они делят плоскость? Раскрась меньшую часть цветными карандашами и вырежи из бумаги.
  18. 3. Прямые AB и CD пересекаются в точке O. Сколько образовалось углов? Запиши различные обозначения этих углов.
  19. 4. Практическая работа Перегни лист бумаги пополам, а потом еще раз пополам. Обведи линии перегиба красным карандашом. Сколько прямых углов получилось? Раскрась их разными цветами.
  20. 5. Найди прямые углы с помощью угольника и назови их. Какие прямые на рисунке являются перпендикулярными?
  21. 7. Ира придумала для Марины задачу: «Я задумала число, прибавила к нему 25, вычла 8, потом еще раз вычла 12, прибавила 36 и получила 46. Какое число я задумала?» Найди задуманное Ирой число.
  22. 8. Марина задумала число, вычла из него сначала 16, затем 32, а после этого прибавила 94 и вычла 145. В результате у нее получилось 144. Отгадай, какое число задумала Марина?
  23. 12. Андрей записал алгоритм игры в прятки. Верно ли он определил последовательность действий игроков в этой игре?
  24. 13. Составь программу какой−нибудь игры.
  25. 14. Таня начертила две прямые линии. На каждой из них она отметила по 3 точки, а всего − 5 точек. Как она это сделала?
  26. «Виды уравнений и способы их решения»

Страница 20. Урок 6 — Математика 2 класс. Петерсон Л.Г. Учебник часть 2

Вопрос

Задание № 8. Марина задумала число, вычла из него сначала 16, затем 32, а после этого прибавила 94 и вычла 145. В результате у неё получилось 144. Отгадай, какое число задумала Марина?

Подсказка

Повтори, что такое уравнения.

Ответ

Поделись с друзьями в социальных сетях:

Вопрос

Задание № 9. Определи порядок действий в выражениях:

a + (t — c) + (d + m) + k a + c — d + b — m + n
(m — k) + (x — y) + (a — c) m — (a + b + c) + (d + k)

Подсказка

Повтори, что такое буквенные выражения.

Ответ

Поделись с друзьями в социальных сетях:

Вопрос

Задание № 10. Составь программу действий и вычисли:

126 + (403 — 76) — 259 900 — (54 + 317 + 485)

Подсказка

Повтори алгоритм письменного сложения и вычитания, а также порядок действий.

Ответ

Поделись с друзьями в социальных сетях:

Вопрос

Задание № 11. Назови разные способы решения уравнений. Реши их тем способом, который ты считаешь самым удобным.

+ 42 = 418 271 — = 35 — 26 = 345

Подсказка

Повтори, что такое уравнения.

Ответ

Поделись с друзьями в социальных сетях:

Источник

Пушкин сделал!

Разбор домашних заданий 1-4 класс

Home » Петерсон Математика » Урок 6. Угол. Прямой угол. Л.Г. Петерсон Математика 2 класс Ответы

Урок 6. Угол. Прямой угол. Л.Г. Петерсон Математика 2 класс Ответы

1. Найди плоские поверхности у предметов окружающей обстановки.

Решение

Пол, потолок, стол, стул, стена, доска, зеркало, подоконник, книга

2. Практическая работа
Отметь на листе бумаги точки A и проведи лучи AB и AC. На сколько частей они делят плоскость? Раскрась меньшую часть цветными карандашами и вырежи из бумаги.

Решение

Лучи делят плоскость на две части.

3. Прямые AB и CD пересекаются в точке O. Сколько образовалось углов? Запиши различные обозначения этих углов.

Решение

Образовалось 4 угла.

∠AOC или ∠СOА
∠AOD или ∠DOA
∠COB или ∠BOC
∠BOD или ∠DOB

Примечание: здесь есть еще развернутые углы на 180 (СОD и АОB)

4. Практическая работа
Перегни лист бумаги пополам, а потом еще раз пополам. Обведи линии перегиба красным карандашом. Сколько прямых углов получилось? Раскрась их разными цветами.

Решение

Получилось 4 прямых угла

5. Найди прямые углы с помощью угольника и назови их. Какие прямые на рисунке являются перпендикулярными?

Решение

Прямые углы:
∠DEF, ∠KMN, ∠XOY.
Перпендикулярные прямые:
DE⊥EF,
KM⊥MN,
XO⊥OY.

6. Сколько углов у треугольника? Запиши обозначения всех его углов. Есть ли у него прямой угол?

У треугольника три угла.

а) ∠KME, ∠KEM,
∠MKE − прямой.

б) ∠BAC, ∠BCA, ∠ABC.
Прямого угла в треугольнике ABC нет.

7. Ира придумала для Марины задачу:
«Я задумала число, прибавила к нему 25, вычла 8, потом еще раз вычла 12, прибавила 36 и получила 46. Какое число я задумала?» Найди задуманное Ирой число.

Решение

Пусть x − задуманное число, значит:
x + 25 − 8 − 12 + 36 = 46
x = 46 − 36 + 12 + 8 − 25
x = 5
Ответ: 5 − задуманное число.

8. Марина задумала число, вычла из него сначала 16, затем 32, а после этого прибавила 94 и вычла 145. В результате у нее получилось 144. Отгадай, какое число задумала Марина?

Решение

Читайте также:  Способ расчета относительных величин сравнения

Пусть x − задуманное число, тогда:
x − 16 − 32 + 94 − 145 = 144
x = 144 + 145 − 94 + 32 + 16
x = 243
Ответ: 243 − задуманное число.

9. Определи порядок действий в выражениях:

Решение

10. Составь программу действий и вычисли:

Решение

11. Назови разные способы решения уравнений. Реши их тем способом, который ты считаешь самым удобным.

Решение

Можно решать уравнения подбором. По очереди подставляем вместо x различный числа и проверяем. Но этот способ очень долгий.

Можно решать уравнения графически на шкале с делениями. Но этот способ также не удобен, особенно если речь идет о больших числах.

x + 42 = 418
Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
x = 418 − 42
x = 376

271 − x = 35
Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.
x = 271 − 35
x = 236

x − 26 = 345
Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.
x = 345 + 26
x = 371

12. Андрей записал алгоритм игры в прятки. Верно ли он определил последовательность действий игроков в этой игре?

Решение

Да, Андрей верно записал алгоритм игры в прятки.

13. Составь программу какой−нибудь игры.

Решение

Программа игры «Морская фигура замри»

14. Таня начертила две прямые линии. На каждой из них она отметила по 3 точки, а всего − 5 точек. Как она это сделала?

Решение

Здравствуйте! Меня зовут Мария, я автор сайта Пушкин сделал. Надеюсь, что мой сайт вам помогает, в свою очередь прошу помощи у вас. Моему сыну поставили диагноз аутизм. Ему необходимы ежедневные коррекционные занятия, если вы можете помочь, буду вам благодарна. Каждые ваши 10 рублей — еще один шанс для моего ребенка жить полноценной жизнью. Страница для сбора здесь

Источник

«Виды уравнений и способы их решения»

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

Читайте также:  Эффективные способы деятельности учителя

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,,c, . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита:x, y, z. По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c, где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

1. Если D 0 , то уравнение решений не имеет

2. Если D = 0 , то уравнение имеет единственное решение

3. Если D 0, то уравнение имеет 2 решения

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a+ c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

3. Биквадратное уравнение

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один (x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

3. Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5x

Решение: Найдём корни уравнения 3 + 5x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

3. Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x=1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

3. Иррациональные уравнения

1. Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Читайте также:  Способ согревания недоношенных детей

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x=-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y, приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

1. Строятся графики каждого уравнения системы

2. Определяются точки пересечения графиков

3. Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y:

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

1. Из одного уравнения системы одна переменная выражается через другую.

2. Полученное выражение подставляется во второе уравнение системы.

3. Решается полученное после подстановки уравнение

4. Полученное решение подставляется в выражение из п.1

5. Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x-y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XXI век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

1. Большой справочник для школьников, поступающие в вузы

П.И. Алтынов, И. И. Баврин, Е. М. Бойченко и др. – М. Дрофа, 2016-840 с.

2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.

Источник

Оцените статью
Разные способы