Наземные растения по всей вероятности унаследовали способ биосинтеза важнейшего

Как гормон роста помог растениям колонизировать сушу

Надежда Дмитриева, Новосибирский государственный университет

На мгновение перенесёмся примерно на 400 млн лет назад (предполагаемое время выхода растений на сушу): растительности почти нет, кое-где водорослевые корки, суша похожа на пустыню. Что же произошло с тех пор, ведь облик Земли поменялся кардинально? Мы видим впечатляющее разнообразие и распространение высших растений почти по всей планете. Обязаны они этим целому ряду инноваций, возникших у их древних предков при выходе из воды на сушу.

Одна из них — способность к быстрому росту, формированию разнообразных органов и тканей в зависимости от стадии развития растения и условий окружающей среды. Часть метаболических систем, которые лежат в основе подобной способности, наземные растения унаследовали от водорослей и в процессе дальнейшей эволюции значительно усовершенствовали. Однако происхождение этого и некоторых других новшеств до сих пор остаётся загадкой, поскольку не укладывается в рамки «стандартной» модели эволюции — вертикального наследования от предков к потомкам.

Синтезируемый растениями ауксин транспортируется в те ткани и органы, рост и развитие которых в данный момент необходимы. Это и кончики корней, и основания листьев, стебли, цветки и прочее. Например, одно из замечательных свойств растений — фототропизм (изменение направления роста органов растений в зависимости от освещённости) — обусловлено биосинтезом и транспортом ауксина. Считается, что наземные растения обладают таким многообразием форм именно благодаря свойству этого гормона управлять ростом ткани в нужное время и в нужном месте.

Ранее было установлено, что у высших растений основной и наиболее значимый путь биосинтеза ауксина, позволяющий наработать нужную концентрацию гормона там, где это необходимо, включает участие триптофана — одной из аминокислот, формирующих белки. В данном процессе ауксин синтезируется из триптофана в ходе двух последовательных реакций. Эти реакции контролируются двумя ферментами — триптофан-аминотрансферазой (TAA) и флавинзависимой монооксигеназой (YUCCA).

Как у современных наземных растений возник этот путь биосинтеза? Логично предположить, что он был унаследован ими от водорослей, однако родственных белков, выполняющих функции ферментов TAA и YUCCA, у водорослей не обнаружили. Это означает, что водоросли не могут сами синтезировать ауксин с участием ферментов TAA и YUCCA. Отсюда напрашивается предположение, что у наземных растений гены триптофан-зависимого биосинтеза ауксина возникли в геноме не в результате вертикального наследования «от родителей к потомкам», а в процессе горизонтального переноса генов от организмов, которые не являются предками наземных растений. Это грибы, протисты или бактерии.

Горизонтальный перенос генов — необычный механизм эволюции, при котором организмы, не состоящие в родстве, могут обмениваться ДНК. Он очень часто встречается у бактерий и редко — у животных (например, у насекомых). У растений известные науке случаи горизонтального переноса редки, однако в последнее время информация о них стала появляться всё чаще. Как правило, это обмен генами между растением и его паразитом или симбионтом*, будь то бактерия, гриб или другое растение.

Вернёмся ненадолго к воображаемой картине жизни на Земле около 400 млн лет назад. Предки ныне живущих растений, предположительно находившиеся в мелких прибрежных водоёмах вместе с различными бактериями, подвергались более сильному ультрафиолетовому облучению, чем сейчас. Ведь толщина защитного озонового слоя в атмосфере была гораздо меньше современной. Весьма неблагоприятная среда, и, как следствие, приобретённые организмом механизмы выживания в этих условиях закреплялись и совершенствовались. Вероятно, в результате и возник эффективный способ биосинтеза ауксина.

Впервые гипотеза о происхождении ферментов TAA и YUCCA у наземных растений путём горизонтального переноса от нерастительных организмов высказана в 2014 году. Авторами гипотезы были китайские исследователи Джипей Ю и его коллеги, опубликовавшие свою работу в журнале «Trends in Plant Sciences». Однако спустя несколько месяцев эта версия была подвергнута сомнению другой группой китайских исследователей — Чунинаяном Вангом с соавторами. В секвенированном геноме многоклеточной харовой водоросли Klebsormidium flaccidum они обнаружили последовательности, очень похожие на гены ферментов TAA и YUCCA, контролирующих основной путь биосинтеза ауксина у наземных растений. Если эти данные верны, то у предков наземных растений и многоклеточных водорослей должны были быть гены, похожие на гены ферментов TAA и YUCCA. Это подтверждало бы гипотезу о вертикальном наследовании пути биосинтеза ауксина современными наземными растениями от многоклеточных водорослей.

Читайте также:  Домашние лимонады способ приготовления

Однако всё оказалось не так просто. Ведущий научный сотрудник Новосибирского государственного университета Дмитрий Афонников совместно с коллегами из Института цитологии и генетики СО РАН Игорем Турнаевым и Константином Гунбиным решили проверить результаты обеих работ методами биоинформатики. Выяснилось, что одна из последовательностей в геноме многоклеточной харовой водоросли, похожая на ген фермента TAA, не кодирует этот фермент.

Проведённый филогенетический анализ показал, что последовательность, похожая на TAA, кодирует другой тип ферментов — аллиназы, участие которых в биосинтезе гормона роста в настоящее время не установлено.

Полученные результаты демонстрируют, что, вероятнее всего, у многоклеточных водорослей Klebsormidium flaccidum механизма биосинтеза ауксина, как у наземных растений, нет. Более вероятно, что основной путь биосинтеза ауксина унаследован высшими растениями именно посредством горизонтального переноса генов. Это событие произошло у древних предков наземных растений предположительно в момент их выхода на сушу, что позволило их потомкам распространиться по всей планете в том многообразии, которое мы сейчас видим. Чтобы окончательно ответить на вопрос о происхождении пути биосинтеза гормона роста, в дополнение к биоинформатическим придётся привлечь экспериментальные методы. Возможно, этому помогут большие проекты по секвенированию геномов растений, такие, как 1Kplant**, с помощью которого были расшифрованы геномы тысячи растений.

Комментарии к статье

* Симбионты — организмы двух разных видов, существующие в длительном, тесном и взаимовыгодном сожительстве.

** Проект 1Крlant или 1000 plants — международная мультидисциплинарная ассоциация научных организаций. Благодаря её деятельности были прочитаны геномы тысячи растений. Данные доступны всем заинтересованным организациям и исследователям для анализа. Это позволяет сравнивать и исследовать геномы большого количества растений и, возможно, приблизит нас к пониманию того, какими эволюционными механизмами обусловлено разнообразие растений.

Источник

Самая упорная наседка

Юрий Фролов, биолог

Несколько лет назад на глубине 1397 м камеры погружаемого аппарата, управляемого по проводам с поверхности воды, засняли осьминожиху глубоководного вида Graneledone boreopacifica, которая явно искала место, чтобы угнездиться и спокойно отложить яйца. Погрузив аппарат через месяц, океанологи обнаружили ту же осьминожиху, прикрепившуюся к скальному уступу. Ошибки быть не могло: на её теле были характерные шрамы от схваток, скорее всего, с хищными рыбами или ракообразными. После этого учёные «навещали» знакомую восемнадцать раз. По-видимому, с момента кладки яиц до рождения потомства она не двигалась и, скорее всего, не питалась. Океанологи пытались подкормить наседку, предлагая ей с помощью руки-манипулятора своего подводного аппарата кусочки крабового мяса, но она упорно отказывалась. Со временем стойкая мать похудела, её глаза потускнели.

Насколько известно по наблюдениям за другими видами, живущими на меньших глубинах, в ожидании потомства осьминожихи не покидают свою кладку ни на минуту и не кормятся, а их движения сводятся к «проветриванию» щупальцами воды вокруг кладки и защите от хищников, желающих полакомиться яйцами.

Как наседка выживает всё это время, почему не гибнет от голода? Незадолго до откладывания яиц у осьминожихи перестают вырабатываться пищеварительные ферменты, так что она не могла бы ничего переварить, даже если бы питалась. Расти взрослому животному уже не нужно, поддерживать температуру тела тоже — осьминоги холоднокровные организмы. На минимальные траты энергии хватает жировых запасов печени.

Читайте также:  Способы соблазнения своего мужчины

При последнем погружении аппарата гнездо оказалось пустым, в нём остались лишь лопнувшие оболочки более полутора сотен яиц, из которых вывелись молодые осьминожки. Обычно осьминоги размножаются раз в жизни и после исполнения своего долга умирают. Срок жизни мелководных видов — около года, и последнюю треть срока они посвящают размножению. Если этому закону подчиняются и глубоководные виды, то наблюдаемая зоологами самка должна была прожить около 18 лет! Кстати, среди птиц дольше всех насиживают яйца императорские пингвины — два месяца. Тоже не в жарком климате живут.

Источник

Наземные растения по всей вероятности унаследовали способ биосинтеза важнейшего

Как гормон роста помог растениям колонизировать сушу

Наземные растения, по всей вероятности, унаследовали способ биосинтеза важнейшего гормона роста от нерастительных организмов. К такому выводу пришли сотрудники Новосибирского государственного университета вместе с коллегами из Института цитологии и генетики СО РАН, сравнив геномы водорослей, мхов и высших наземных растений. Речь идёт об ауксине — «короле» гормональной системы растений, отвечающем за рост их тканей и органов.

На мгновение перенесёмся примерно на 400 млн лет назад (предполагаемое время выхода растений на сушу): растительности почти нет, кое-где водорослевые корки, суша похожа на пустыню. Что же произошло с тех пор, ведь облик Земли поменялся кардинально? Мы видим впечатляющее разнообразие и распространение высших растений почти по всей планете. Обязаны они этим целому ряду инноваций, возникших у их древних предков при выходе из воды на сушу.

Одна из них — способность к быстрому росту, формированию разнообразных органов и тканей в зависимости от стадии развития растения и условий окружающей среды. Часть метаболических систем, которые лежат в основе подобной способности, наземные растения унаследовали от водорослей и в процессе дальнейшей эволюции значительно усовершенствовали. Однако происхождение этого и некоторых других новшеств до сих пор остаётся загадкой, поскольку не укладывается в рамки «стандартной» модели эволюции — вертикального наследования от предков к потомкам.

Синтезируемый растениями ауксин транспортируется в те ткани и органы, рост и развитие которых в данный момент необходимы. Это и кончики корней, и основания листьев, стебли, цветки и прочее. Например, одно из замечательных свойств растений — фототропизм (изменение направления роста органов растений в зависимости от освещённости) — обусловлено биосинтезом и транспортом ауксина. Считается, что наземные растения обладают таким многообразием форм именно благодаря свойству этого гормона управлять ростом ткани в нужное время и в нужном месте.

Ранее было установлено, что у высших растений основной и наиболее значимый путь биосинтеза ауксина, позволяющий наработать нужную концентрацию гормона там, где это необходимо, включает участие триптофана — одной из аминокислот, формирующих белки. В данном процессе ауксин синтезируется из триптофана в ходе двух последовательных реакций. Эти реакции контролируются двумя ферментами — триптофан-аминотрансферазой (TAA) и флавинзависимой монооксигеназой (YUCCA).

Как у современных наземных растений возник этот путь биосинтеза? Логично предположить, что он был унаследован ими от водорослей, однако родственных белков, выполняющих функции ферментов TAA и YUCCA, у водорослей не обнаружили. Это означает, что водоросли не могут сами синтезировать ауксин с участием ферментов TAA и YUCCA. Отсюда напрашивается предположение, что у наземных растений гены триптофан-зависимого биосинтеза ауксина возникли в геноме не в результате вертикального наследования «от родителей к потомкам», а в процессе горизонтального переноса генов от организмов, которые не являются предками наземных растений. Это грибы, протисты или бактерии.

Горизонтальный перенос генов — необычный механизм эволюции, при котором организмы, не состоящие в родстве, могут обмениваться ДНК. Он очень часто встречается у бактерий и редко — у животных (например, у насекомых). У растений известные науке случаи горизонтального переноса редки, однако в последнее время информация о них стала появляться всё чаще. Как правило, это обмен генами между растением и его паразитом или симбионтом*, будь то бактерия, гриб или другое растение.

Читайте также:  Грибок ногтевой лечение народным способом

Вернёмся ненадолго к воображаемой картине жизни на Земле около 400 млн лет назад. Предки ныне живущих растений, предположительно находившиеся в мелких прибрежных водоёмах вместе с различными бактериями, подвергались более сильному ультрафиолетовому облучению, чем сейчас. Ведь толщина защитного озонового слоя в атмосфере была гораздо меньше современной. Весьма неблагоприятная среда, и, как следствие, приобретённые организмом механизмы выживания в этих условиях закреплялись и совершенствовались. Вероятно, в результате и возник эффективный способ биосинтеза ауксина.

Впервые гипотеза о происхождении ферментов TAA и YUCCA у наземных растений путём горизонтального переноса от нерастительных организмов высказана в 2014 году. Авторами гипотезы были китайские исследователи Джипей Ю и его коллеги, опубликовавшие свою работу в журнале «Trends in Plant Sciences». Однако спустя несколько месяцев эта версия была подвергнута сомнению другой группой китайских исследователей — Чунинаяном Вангом с соавторами. В секвенированном геноме многоклеточной харовой водоросли Klebsormidium flaccidum они обнаружили последовательности, очень похожие на гены ферментов TAA и YUCCA, контролирующих основной путь биосинтеза ауксина у наземных растений. Если эти данные верны, то у предков наземных растений и многоклеточных водорослей должны были быть гены, похожие на гены ферментов TAA и YUCCA. Это подтверждало бы гипотезу о вертикальном наследовании пути биосинтеза ауксина современными наземными растениями от многоклеточных водорослей.

Однако всё оказалось не так просто. Ведущий научный сотрудник Новосибирского государственного университета Дмитрий Афонников совместно с коллегами из Института цитологии и генетики СО РАН Игорем Турнаевым и Константином Гунбиным решили проверить результаты обеих работ методами биоинформатики. Выяснилось, что одна из последовательностей в геноме многоклеточной харовой водоросли, похожая на ген фермента TAA, не кодирует этот фермент.

Проведённый филогенетический анализ показал, что последовательность, похожая на TAA, кодирует другой тип ферментов — аллиназы, участие которых в биосинтезе гормона роста в настоящее время не установлено.

Полученные результаты демонстрируют, что, вероятнее всего, у многоклеточных водорослей Klebsormidium flaccidum механизма биосинтеза ауксина, как у наземных растений, нет. Более вероятно, что основной путь биосинтеза ауксина унаследован высшими растениями именно посредством горизонтального переноса генов. Это событие произошло у древних предков наземных растений предположительно в момент их выхода на сушу, что позволило их потомкам распространиться по всей планете в том многообразии, которое мы сейчас видим. Чтобы окончательно ответить на вопрос о происхождении пути биосинтеза гормона роста, в дополнение к биоинформатическим придётся привлечь экспериментальные методы. Возможно, этому помогут большие проекты по секвенированию геномов растений, такие, как 1Kplant**, с помощью которого были расшифрованы геномы тысячи растений.

Ауксин — вещество, контролирующее фототропизм (направленное ростовое движение растений в сторону источника света). Синтезируется растением и транспортируется в те его ткани и органы, рост и развитие которых в данный момент наиболее необходимы.

Надежда Дмитриева, Новосибирский государственный университет
.

* Симбионты — организмы двух разных видов, существующие в длительном, тесном и взаимовыгодном сожительстве.

** Проект 1Крlant или 1000 plants — международная мультидисциплинарная ассоциация научных организаций. Благодаря её деятельности были прочитаны геномы тысячи растений. Данные доступны всем заинтересованным организациям и исследователям для анализа. Это позволяет сравнивать и исследовать геномы большого количества растений и, возможно, приблизит нас к пониманию того, какими эволюционными механизмами обусловлено разнообразие растений.

Источник

Оцените статью
Разные способы