Найти предел двумя способами

Содержание
  1. Как решать пределы для чайников?
  2. Примеры решений
  3. Что делать с неопределенностью вида: $ \bigg [\frac\bigg ] $ Пример 3 Решить $ \lim \limits_ \frac $ Решение Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела. Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её 🙂 Получаем, что числитель $ x^2-1=(x-1)(x+1) $ Продолжаем решать учитывая вышеприведенное преобразование: Ответ $$ \lim \limits_ \frac = -2 $$ Пример 4 $$ \lim \limits_\frac $$ Решение Бесконечность получилась в результате — это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность. Ответ $$ \lim \limits_\frac = \infty $$ Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac<\infty> <\infty>\bigg ] $ Пример 5 Вычислить $ \lim \limits_ \frac $ Решение Что же делать? Как быть? Не стоит паниковать, потому что невозможное — возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем. Используя определение из примера 2 и подставляя в место х бесконечность получаем: Ответ $$ \lim \limits_ \frac = \infty $$ Пример 6 $$ \lim \limits_\frac $$ Решение Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем. Ответ $$ \lim \limits_\frac = 1 $$ Алгоритм вычисления лимитов Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: «ноль делить на ноль» или «бесконечность делить на бесконечность» и переходим к следующим пунктам инструкции. Чтобы устранить неопределенность «ноль делить на ноль» нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела. Если неопределенность «бесконечность делить на бесконечность», тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение. В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя. Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь! Источник Предел последовательности и функции одной переменной Что такое предел? Понятие предела Все без исключения где-то в глубине души понимают, что такое предел, но как только слышат «предел функции» или «предел последовательности», то возникает легкая растерянность. Не волнуйтесь, это всего лишь от незнаний! Через 3 минуты прочтения ниженаписанного, вы станете грамотнее. Важно раз и навсегда понять, что имеют в виду, когда говорят о каких-то предельных положениях, значениях, ситуациях и вообще, когда по жизни прибегают к термину предела. Взрослые люди это понимает интуитивно, а мы разберем на нескольких примерах. Вспомним строки из песни группы «Чайф»: «… не доводи до предела, до предела не доводи …». В данном случае по задумке автора предельная ситуацию в отношениях между людьми – это расставание. Автор как бы предупреждает, что в результате последовательности конкретных действий мы придем к конкретному результату – расставанию. Наверняка вы слышали фразу о предельно устойчивом положении предмета в пространстве. Вы сами можете без труда смоделировать такую ситуацию с подручными вещами. Например, слегка наклоните пластиковую бутылку и отпустите её. Она обратно встанет на днище. Но есть такие предельные наклонные положения, за границами которых она просто упадет. Опять же предельное положение в данном случае — это нечто конкретное. Важно это понимать. Можно много приводить примеров использования термина предела: предел человеческих возможностей, предел прочности материала и так далее. Ну а с беспределами так вообще каждый день сталкиваемся))) Но сейчас нас интересуют предел последовательности и предел функции в математике. Предел числовой последовательности в математике Предел (числовой последовательности) — одно из основных понятий математического анализа. На понятии предельного перехода базируются сотни и сотни теорем, определяющие современную науку. Сразу конкретный пример для наглядности. Допустим есть бесконечная последовательность чисел, каждое из которых в два раза меньше предыдущего, начиная с единицы: 1, ½, ¼, . Так вот предел числовой последовательности (если он существует) – это какое-то конкретное значение. В процессе деления пополам каждое последующее значение последовательности неограниченно приближается к определенному числу. Несложно догадаться, что это будет ноль. Когда мы говорим о существовании предела (предельного значения), это не значит, что какой-то член последовательности будет равен этому предельному значению. Он может лишь только стремиться к нему. Из нашего примера это более чем понятно. Сколько бы раз мы не делили единицу на два, мы никогда не получим ноль. Будет лишь число в два раза меньше предыдущего, но никак не ноль! Предел функции в математике В математическом анализе безусловно самое важное – это понятие предела функции. Не углубляясь в теорию, скажем следующее: предельное значение функции не всегда может принадлежать области значений самой функции. При изменении аргумента, функция будет стремиться к какому-то значению, но может его не принять никогда. Например, гипербола 1/x не имеет значения ноль ни в какой точке, но она неограниченно стремится к нулю при стремлении x к бесконечности. Нашей целью не является дать вам какие-то теоретические знания, для этого есть куча умных толстых книжек. Но мы предлагаем вам воспользоваться онлайн калькулятором пределов, с помощью которого сможете сравнить ваше решение с правильным ответом. Помимо всего, калькулятор выдает пошаговое решение пределов, применяя зачастую правило Лопиталя с использованием дифференцирования числителя и знаменателя непрерывной в точке или на некотором отрезке функции. Источник Решение задач по математике онлайн //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘ Калькулятор онлайн. Решение пределов. Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции. Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс вычисления предела. Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением. Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается. Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы. Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите выражение функции Вычислить предел Немного теории. Предел функции при \( x \to x_0 \) Пусть функция \( f(x) \) определена на некотором множестве \(X\) и пусть точка \( x_0 \in X \) или \( x_0 \notin X \) Возьмем из \(X\) последовательность точек, отличных от \(x_0\) : \(x_1 \;, \; x_2 \;, \; x_3 \;, . \; x_n \; , \; . \tag \) сходящуюся к \(x^*\). Значения функции в точках этой последовательности также образуют числовую последовательность \( f(x_1) \;, \; f(x_2) \;, \; f(x_3) \;, . \; f(x_n) \; , \; . \tag \) и можно ставить вопрос о существовании ее предела. Определение. Число \(A\) называется пределом функции \(f(x)\) в точке \( x = x_0 \) (или при \( x \to x_0 \) ), если для любой сходящейся к \(x_0\) последовательности (1) значений аргумента \(x\), отличных от \(x_0\) соответствующая последовательность (2) значений функции сходится к числу \(A\). Символически это записывается так: $$ \lim_ < f(x)>= A $$ Функция \(f(x)\) может иметь в точке \(x_0\) только один предел. Это следует из того, что последовательность \( \left\ < f(x_n) \right\>\) имеет только один предел. Существует другое определение предела функции. Определение Число \(A\) называется пределом функции \(f(x)\) в точке \(x_0\), если для любого числа \( \varepsilon > 0 \) существует число \( \delta > 0 \) такое, что для всех \( x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \( |x-x_0| 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \( \varepsilon — \delta \)». Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи. Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \( \varepsilon — \delta \)» — определением предела функции по Коши. Предел функции при \( x \to x_ \) и при \( x \to x_ <0+>\) В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом. Определение Число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любой сходящейся к \(x_0\) последовательности (1), элементы \(x_n\) которой больше (меньше) \(x_0\), соответствующая последовательность (2) сходится к \(A\). Символически это записывается так: $$ \lim_> f(x) = A \; \left( \lim_> f(x) = A \right) $$ Можно дать равносильное определение односторонних пределов функции «на языке \( \varepsilon — \delta \)»: Определение число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любого \( \varepsilon > 0 \) существует \( \delta > 0 \) такое, что для всех \(x\), удовлетворяющих неравенствам \( x_0 0) (\exists \delta > 0) (\forall x, \; x_0 0) (\exists \delta > 0) (\forall x, \; x_0 -\delta Предел функции при \( x \to \infty \), при \( x \to -\infty \) и при \( x \to +\infty \) Кроме рассмотренных понятий предела функции при \( x \to x_0 \) и односторонних пределов существует также понятие предела функции при стремлении аргумента к бесконечности. Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to \infty \), если для любой бесконечно большой последовательности (1) значений аргумента соответствующая последовательность (2) значений функции сходится к \(A\). Символическая запись: $$ \lim_ f(x) = A $$ Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to +\infty \; (x \to -\infty) \) , если для любой бесконечно большой последовательности значений аргумента, элементы \(x_n\) которой положительны (отрицательны), соответствующая последовательность значений функции сходится к \(A\). Символическая запись: $$ \lim_ f(x) = A \; \left( \lim_ f(x) = A \right) $$ Теоремы о пределах функций Определение предела функции «на языке последовательностей» дает возможность перенести доказанные выше теоремы о пределах последовательностей на функции. Покажем это на примере двух теорем. Теорема. Пусть функции \(f(x)\) и \(g(x)\) имеют в точке \(x_0\) пределы \(B\) и \(C\). Тогда функции \( f(x) \pm g(x) \; , \; f(x) \cdot g(x) \) и \( \frac \) (при \( C \neq 0 \) ) имеют в точке \(x_0\) пределы, равные соответственно \( B \pm C \; , \; B \cdot C \), и \( \frac\). Теорема. Пусть функции \( f(x) \; , \; g(x) \) и \( h(x) \) определены в некоторой окрестности точки \(x_0\), за исключением, быть может, самой точки \(x_0\), и функции \( f(x) \; , \; h(x) \) имеют в точке \(x_0\) предел, равный \(A\), т.е. $$ \lim_ f(x) = \lim_ h(x) = A $$ Пусть, кроме того, выполняются неравенства \( f(x) \leqslant g(x) \leqslant h(x) \). Тогда $$ \lim_ g(x) = A $$ Теорема Лопиталя. Если $$ \lim_ f(x) = \lim_ g(x) = 0 $$ или \(\infty \), \(f(x)\) и \(g(x)\) дифференцируемы в окрестности \(x_0\) , и \( g'(x) \neq 0 \) в окрестности \(x_0\) , и существует $$ \lim_ \frac $$ то существует $$ \lim_ \frac = \lim_ \frac $$ Т.е. теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных. Теорема Лопиталя позволяет раскрывать неопределённости вида \( \frac\) и \( \frac<\infty> <\infty>\). Источник
  4. Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac<\infty> <\infty>\bigg ] $
  5. Алгоритм вычисления лимитов
  6. Предел последовательности и функции одной переменной
  7. Решение задач по математике онлайн
  8. Калькулятор онлайн. Решение пределов.
  9. Немного теории.
  10. Предел функции при \( x \to x_0 \)
  11. Предел функции при \( x \to x_ \) и при \( x \to x_ <0+>\)
  12. Предел функции при \( x \to \infty \), при \( x \to -\infty \) и при \( x \to +\infty \)
  13. Теоремы о пределах функций

Как решать пределы для чайников?

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что «скучная теория» должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

а) $$ \lim \limits_ \frac<1> = \infty $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Вычислить а) $ \lim_ \frac<1> $; б)$ \lim_ \frac<1> $
Решение
Ответ
$$ \text \lim \limits_ \frac<1> = \infty \text< б)>\lim \limits_ \frac<1> = 0 $$

Внимание «чайникам» 🙂 Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:

Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними — это не так страшно как кажется 🙂

Пример 2
$$ \lim \limits_ \frac $$
Решение
Ответ
$$ \lim \limits_ \frac = 2 $$

Что делать с неопределенностью вида: $ \bigg [\frac<0> <0>\bigg ] $

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела.

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её 🙂

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

Пример 3
Решить $ \lim \limits_ \frac $
Решение
Ответ
$$ \lim \limits_ \frac = -2 $$

Бесконечность получилась в результате — это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность.

Пример 4
$$ \lim \limits_\frac $$
Решение
Ответ
$$ \lim \limits_\frac = \infty $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ \bigg [\frac<\infty> <\infty>\bigg ] $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное — возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем.

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

Пример 5
Вычислить $ \lim \limits_ \frac $
Решение
Ответ
$$ \lim \limits_ \frac = \infty $$

Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем.

Пример 6
$$ \lim \limits_\frac $$
Решение
Ответ
$$ \lim \limits_\frac = 1 $$

Алгоритм вычисления лимитов

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: «ноль делить на ноль» или «бесконечность делить на бесконечность» и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность «ноль делить на ноль» нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность «бесконечность делить на бесконечность», тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Источник

Предел последовательности и функции одной переменной

Что такое предел? Понятие предела

Все без исключения где-то в глубине души понимают, что такое предел, но как только слышат «предел функции» или «предел последовательности», то возникает легкая растерянность.

Не волнуйтесь, это всего лишь от незнаний! Через 3 минуты прочтения ниженаписанного, вы станете грамотнее.

Важно раз и навсегда понять, что имеют в виду, когда говорят о каких-то предельных положениях, значениях, ситуациях и вообще, когда по жизни прибегают к термину предела.

Взрослые люди это понимает интуитивно, а мы разберем на нескольких примерах.

Вспомним строки из песни группы «Чайф»: «… не доводи до предела, до предела не доводи …».

В данном случае по задумке автора предельная ситуацию в отношениях между людьми – это расставание.

Автор как бы предупреждает, что в результате последовательности конкретных действий мы придем к конкретному результату – расставанию.

Наверняка вы слышали фразу о предельно устойчивом положении предмета в пространстве.

Вы сами можете без труда смоделировать такую ситуацию с подручными вещами.

Например, слегка наклоните пластиковую бутылку и отпустите её. Она обратно встанет на днище.

Но есть такие предельные наклонные положения, за границами которых она просто упадет.

Опять же предельное положение в данном случае — это нечто конкретное. Важно это понимать.

Можно много приводить примеров использования термина предела: предел человеческих возможностей, предел прочности материала и так далее.

Ну а с беспределами так вообще каждый день сталкиваемся)))

Но сейчас нас интересуют предел последовательности и предел функции в математике.

Предел числовой последовательности в математике

Предел (числовой последовательности) — одно из основных понятий математического анализа. На понятии предельного перехода базируются сотни и сотни теорем, определяющие современную науку.

Сразу конкретный пример для наглядности.

Допустим есть бесконечная последовательность чисел, каждое из которых в два раза меньше предыдущего, начиная с единицы: 1, ½, ¼, .

Так вот предел числовой последовательности (если он существует) – это какое-то конкретное значение.

В процессе деления пополам каждое последующее значение последовательности неограниченно приближается к определенному числу.

Несложно догадаться, что это будет ноль.

Когда мы говорим о существовании предела (предельного значения), это не значит, что какой-то член последовательности будет равен этому предельному значению. Он может лишь только стремиться к нему.

Из нашего примера это более чем понятно. Сколько бы раз мы не делили единицу на два, мы никогда не получим ноль. Будет лишь число в два раза меньше предыдущего, но никак не ноль!

Предел функции в математике

В математическом анализе безусловно самое важное – это понятие предела функции.

Не углубляясь в теорию, скажем следующее: предельное значение функции не всегда может принадлежать области значений самой функции.

При изменении аргумента, функция будет стремиться к какому-то значению, но может его не принять никогда.

Например, гипербола 1/x не имеет значения ноль ни в какой точке, но она неограниченно стремится к нулю при стремлении x к бесконечности.

Нашей целью не является дать вам какие-то теоретические знания, для этого есть куча умных толстых книжек.

Но мы предлагаем вам воспользоваться онлайн калькулятором пределов, с помощью которого сможете сравнить ваше решение с правильным ответом.

Помимо всего, калькулятор выдает пошаговое решение пределов, применяя зачастую правило Лопиталя с использованием дифференцирования числителя и знаменателя непрерывной в точке или на некотором отрезке функции.

Источник

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение пределов.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции. Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите выражение функции
Вычислить предел

Немного теории.

Предел функции при \( x \to x_0 \)

Пусть функция \( f(x) \) определена на некотором множестве \(X\) и пусть точка \( x_0 \in X \) или \( x_0 \notin X \)

Возьмем из \(X\) последовательность точек, отличных от \(x_0\) :
\(x_1 \;, \; x_2 \;, \; x_3 \;, . \; x_n \; , \; . \tag <1>\) сходящуюся к \(x^*\).
Значения функции в точках этой последовательности также образуют числовую последовательность
\( f(x_1) \;, \; f(x_2) \;, \; f(x_3) \;, . \; f(x_n) \; , \; . \tag <2>\) и можно ставить вопрос о существовании ее предела.

Определение. Число \(A\) называется пределом функции \(f(x)\) в точке \( x = x_0 \) (или при \( x \to x_0 \) ), если для любой сходящейся к \(x_0\) последовательности (1) значений аргумента \(x\), отличных от \(x_0\) соответствующая последовательность (2) значений функции сходится к числу \(A\).

Символически это записывается так:
$$ \lim_ < f(x)>= A $$

Функция \(f(x)\) может иметь в точке \(x_0\) только один предел. Это следует из того, что последовательность \( \left\ < f(x_n) \right\>\) имеет только один предел.

Существует другое определение предела функции.

Определение Число \(A\) называется пределом функции \(f(x)\) в точке \(x_0\), если для любого числа \( \varepsilon > 0 \) существует число \( \delta > 0 \) такое, что для всех \( x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \( |x-x_0| 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей».
Второе определение называют определением «на языке \( \varepsilon — \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \( \varepsilon — \delta \)» — определением предела функции по Коши.

Предел функции при \( x \to x_ <0->\) и при \( x \to x_ <0+>\)

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любой сходящейся к \(x_0\) последовательности (1), элементы \(x_n\) которой больше (меньше) \(x_0\), соответствующая последовательность (2) сходится к \(A\).

Символически это записывается так:
$$ \lim_> f(x) = A \; \left( \lim_> f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \( \varepsilon — \delta \)»:

Определение число \(A\) называется правым (левым) пределом функции \(f(x)\) в точке \(x_0\), если для любого \( \varepsilon > 0 \) существует \( \delta > 0 \) такое, что для всех \(x\), удовлетворяющих неравенствам \( x_0 0) (\exists \delta > 0) (\forall x, \; x_0 0) (\exists \delta > 0) (\forall x, \; x_0 -\delta

Предел функции при \( x \to \infty \), при \( x \to -\infty \) и при \( x \to +\infty \)

Кроме рассмотренных понятий предела функции при \( x \to x_0 \) и односторонних пределов существует также понятие предела функции при стремлении аргумента к бесконечности.

Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to \infty \), если для любой бесконечно большой последовательности (1) значений аргумента соответствующая последовательность (2) значений функции сходится к \(A\).

Символическая запись:
$$ \lim_ f(x) = A $$

Определение. Число \(A\) называется пределом функции \(f(x)\) при \( x \to +\infty \; (x \to -\infty) \) , если для любой бесконечно большой последовательности значений аргумента, элементы \(x_n\) которой положительны (отрицательны), соответствующая последовательность значений функции сходится к \(A\).

Символическая запись:
$$ \lim_ f(x) = A \; \left( \lim_ f(x) = A \right) $$

Теоремы о пределах функций

Определение предела функции «на языке последовательностей» дает возможность перенести доказанные выше теоремы о пределах последовательностей на функции. Покажем это на примере двух теорем.

Теорема. Пусть функции \(f(x)\) и \(g(x)\) имеют в точке \(x_0\) пределы \(B\) и \(C\). Тогда функции \( f(x) \pm g(x) \; , \; f(x) \cdot g(x) \) и \( \frac \) (при \( C \neq 0 \) ) имеют в точке \(x_0\) пределы, равные соответственно \( B \pm C \; , \; B \cdot C \), и \( \frac \).

Теорема. Пусть функции \( f(x) \; , \; g(x) \) и \( h(x) \) определены в некоторой окрестности точки \(x_0\), за исключением, быть может, самой точки \(x_0\), и функции \( f(x) \; , \; h(x) \) имеют в точке \(x_0\) предел, равный \(A\), т.е. $$ \lim_ f(x) = \lim_ h(x) = A $$
Пусть, кроме того, выполняются неравенства \( f(x) \leqslant g(x) \leqslant h(x) \). Тогда $$ \lim_ g(x) = A $$

Теорема Лопиталя. Если $$ \lim_ f(x) = \lim_ g(x) = 0 $$ или \(\infty \), \(f(x)\) и \(g(x)\) дифференцируемы в окрестности \(x_0\) , и \( g'(x) \neq 0 \) в окрестности \(x_0\) , и существует $$ \lim_ \frac $$ то существует $$ \lim_ \frac = \lim_ \frac $$

Т.е. теорема утверждает, что при некоторых условиях предел отношения функций равен пределу отношения их производных.
Теорема Лопиталя позволяет раскрывать неопределённости вида \( \frac<0> <0>\) и \( \frac<\infty> <\infty>\).

Источник

Читайте также:  Способы кодирования информации текстовой звуковой числовой графической
Оцените статью
Разные способы